New Development in Robot Vision pp 181-198

Part of the Cognitive Systems Monographs book series (COSMOS, volume 23)

Intensity-Difference Based Monocular Visual Odometry for Planetary Rovers

Abstract

A monocular visual odometry algorithm is presented that is able to estimate the rover’s 3D motion by maximizing the conditional probability of the intensity differences between two consecutive images, which were captured by a monocular video camera before and after the rover’s motion. The camera is supposed to be rigidly attached to the rover. The intensity differences are measured at observation points only that are points with high linear intensity gradients. It represents an alternative to traditionally stereo visual odometry algorithms, where the rover’s 3D motion is estimated by maximizing the conditional probability of the 3D correspondences between two sets of 3D feature point positions, which were obtained from two consecutive stereo image pairs that were captured by a stereo video camera before and after the rover’s motion. Experimental results with synthetic and real image sequences revealed highly accurate and reliable estimates, respectively. Additionally, it seems to be an excellent candidate for mobile robot missions where space, weight and power supply are really very limited.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shirley, D., Matijevic, J.: Mars Pathfinder Microrover. Autonomous Robots 2, 283–289 (1995)CrossRefGoogle Scholar
  2. 2.
    NASA, Mars Exploration Rover Launches. In: Press Kits. Jet Propulsion Laboratory, California Institute of Technology (2003)Google Scholar
  3. 3.
    NASA, Mars Science Laboratory Launch. In: Press Kits. Jet Propulsion Laboratory, California Institute of Technology (2011)Google Scholar
  4. 4.
    Braum, R.: Design of the ARES Mars Airplane and Mission Architecture. Journal of Spacecraft and Rockets 43(5), 1026–1034 (2006)CrossRefGoogle Scholar
  5. 5.
    Michelson, R.C.: Slow flight in the lower Mars Atmosphere in support of NASA science missions. In: Proceedings of International Unmanned Vehicles Workshop (2010)Google Scholar
  6. 6.
    Ali, K., Vanelli, C., Biesiadecki, J., et al.: Attitude and Position Estimation on the Mars Exploration Rovers. In: Proceedings of IEEE International Conference on Systems, Man, and Cybernetics (2005)Google Scholar
  7. 7.
    Eisenman, A., Liebe, C., Perez, R.: Sun sensing on the Mars exploration rovers. In: Proceedings of IEEE Aerospace Conference (2002)Google Scholar
  8. 8.
    Moravec, H.: Obstacle Avoidance and Navigation in the Real World by a Seeing Robot Rover. PhD Thesis. Stanford University (1980)Google Scholar
  9. 9.
    Matthies, L., Shafer, S.: Error Modeling in Stereo Navigation. IEEE Journal of Robotics and Automation Ra-3(3), 239–248 (1987)CrossRefGoogle Scholar
  10. 10.
    Matthies, L.: Dynamic stereo vision. PhD Thesis. Computer Science, Carnegie Mellon (1989)Google Scholar
  11. 11.
    Olson, C., Matthies, L., Schoppers, M., et al.: Robust stereo ego-motion for long distance davigation. In: Proceedings of IEEE Conference on Computer Vision Pattern Recognition (2000)Google Scholar
  12. 12.
    Maimone, M., Cheng, Y., Matthies, L.: Two years of visual odometry on the Mars Exploration Rovers. Journal of Field Robotics 24(3), 169–186 (2007)CrossRefGoogle Scholar
  13. 13.
    Lacroix, S., Mallet, A., Chatila, R., et al.: Rover self localization in planetary-like environments. In: Proceedings of International Symposium on Artificial Intelligence, Robotics and Automation in Space (1999)Google Scholar
  14. 14.
    Nister, D., Naroditsky, O., Bergen, J.: Visual Odometry. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (2004)Google Scholar
  15. 15.
    Comport, A., Malis, E., Rives, P.: Accurate Quadrifocal Tracking for Robust 3D Visual Odometry. In: Proceedings of IEEE International Conference on Robotics and Automation (2007)Google Scholar
  16. 16.
    Corke, P., Strelow, D., Singh, S.: Omnidirectional Visual Odometry for a Planetary Rover. In: Proceedings of IEEE International Conference on Robots and Systems (2005)Google Scholar
  17. 17.
    Strasdat, H., Montiel, J., Davison, A.: Real time monocular SLAM: Why filter? In: Proceedings of IEEE International Conference on Robotics and Automation (2010)Google Scholar
  18. 18.
    Strasdat, H., Montiel, J., Davison, A.: Scale Drift-Aware Large Scale Monocular SLAM. In: Proceedings of Robotics: Science and Systems (2010)Google Scholar
  19. 19.
    Johnson, A., Goldberg, S., Cheng, Y., et al.: Robust and Efficient Stereo Feature Tracking for Visual Odometry. In: Proceedings of IEEE International Conference on Robotics and Automation (2008)Google Scholar
  20. 20.
    Horn, B., Schunck, B.: Determining Optical Flow. Artificial Intelligence 17, 185–203 (1981)CrossRefGoogle Scholar
  21. 21.
    Lucas, B., Kanade, T.: An Iterative Image Registration Technique with an Application to Stereo Vision. In: Proceedings of the 7th International Joint Conference on Artificial Intelligence (1981)Google Scholar
  22. 22.
    Martinez, G.: Analyse-Synthese-Codierung basierend auf dem Modell bewegter dreidi-mensionaler, gegliederter Objekte. PhD Thesis. Leibniz Universitaet Hannover, Germany (1998)Google Scholar
  23. 23.
    Martinez, G., Kakadiaris, I., Magruder, D.: Teleoperating ROBONAUT: A case study. In: Proceedings of British Machine Vision Conference (2002)Google Scholar
  24. 24.
    Adiv, G.: Determining Three-Dimensional Motion and Structure from Optical Flow Generated by Several Moving Objects. IEEE Transactions on Pattern Analysis and Machine Intelligence 7(4), 384–401 (1985)CrossRefGoogle Scholar
  25. 25.
    Heeger, D., Jepson, A.D.: Subspace methods for recovering rigid motion I: Algorithm and Implementation. International Journal of Computer Vision 7(2), 95–117 (1992)CrossRefGoogle Scholar
  26. 26.
    Horn, B., Weldon, E.J.: Direct methods for recovering motion. International Journal of Computer Vision 2, 51–76 (1988)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Image Processing and Computer Vision Research Laboratory (IPCV-LAB), Escuela de Ingeniería EléctricaUniversidad de Costa RicaSan JoséCosta Rica

Personalised recommendations