Yangian Characters and Classical \(\mathcal{W}\)-Algebras

  • A. I. MolevEmail author
  • E. E. Mukhin
Conference paper
Part of the Contributions in Mathematical and Computational Sciences book series (CMCS, volume 8)


The Yangian characters (or q-characters) are known to be closely related to the classical \(\mathcal{W}\)-algebras and to the centers of the affine vertex algebras at the critical level. We make this relationship more explicit by producing families of generators of the \(\mathcal{W}\)-algebras from the characters of the Kirillov–Reshetikhin modules associated with multiples of the first fundamental weight in types B and D and of the fundamental modules in type C. We also give an independent derivation of the character formulas for these representations in the context of the RTT presentation of the Yangians. In all cases the generators of the \(\mathcal{W}\)-algebras correspond to the recently constructed elements of the Feigin–Frenkel centers via an affine version of the Harish-Chandra isomorphism.


Left Ideal Formal Series Cartan Subalgebra Character Formula Screening Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Arnaudon, D., Avan, J., Crampé, N., Frappat, L., Ragoucy, E.: R-matrix presentation for super-Yangians Y (osp(m | 2n)). J. Math. Phys. 44, 302–308 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Arnaudon, D., Molev, A., Ragoucy, E.: On the R-matrix realization of Yangians and their representations. Annales Henri Poincaré 7, 1269–1325 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Brundan, J., Kleshchev, A.: Representations of shifted Yangians and finite W-algebras. Mem. Am. Math. Soc. 196(918) (2008)Google Scholar
  4. 4.
    Chervov, A.V., Molev, A.I.: On higher order Sugawara operators. Int. Math. Res. Not. 2009, no. 9, 1612–1635Google Scholar
  5. 5.
    Chervov, A., Talalaev, D.: Quantum spectral curves, quantum integrable systems and the geometric Langlands correspondence. arXiv:hep-th/0604128Google Scholar
  6. 6.
    Chervov, A., Falqui, G., Rubtsov, V.: Algebraic properties of Manin matrices 1. Adv. Appl. Math. 43, 239–315 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Dixmier, J.: Algèbres Enveloppantes. Gauthier-Villars, Paris (1974)zbMATHGoogle Scholar
  8. 8.
    Drinfeld, V.G.: Quantum groups. In: International Congress of Mathematicians (Berkeley, 1986), pp. 798–820. American Mathematical Society, Providence (1987)Google Scholar
  9. 9.
    Drinfeld, V.G., Sokolov, V.V.: Lie algebras and equations of Korteweg–de Vries type. J. Sov. Math. 30, 1975–2036 (1985)CrossRefGoogle Scholar
  10. 10.
    Feigin, B., Frenkel, E.: Affine Kac–Moody algebras at the critical level and Gelfand–Dikii algebras. Int. J. Mod. Phys. A 7(suppl. 1A), 197–215 (1992)CrossRefzbMATHGoogle Scholar
  11. 11.
    Frenkel, E.: Langlands Correspondence for Loop Groups. Cambridge Studies in Advanced Mathematics, vol. 103. Cambridge University Press, Cambridge (2007)Google Scholar
  12. 12.
    Frenkel, E., Mukhin, E.: Combinatorics of q-characters of finite-dimensional representations of quantum affine algebras. Commun. Math. Phys. 216, 23–57 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Frenkel, E., Mukhin, E.: The Hopf algebra \(\mathrm{Rep}\,U_{q}\widehat{\mathfrak{g}\mathfrak{l}}_{\infty }\). Selecta Math. 8, 537–635 (2002)Google Scholar
  14. 14.
    Frenkel, E., Reshetikhin, N.: The q-characters of representations of quantum affine algebras and deformations of W-algebras. In: Recent Developments in Quantum Affine Algebras and Related Topics (Raleigh, 1998). Contemporary Mathematics, vol. 248, pp. 163–205. American Mathematical Society, Providence (1999)Google Scholar
  15. 15.
    Hernandez, D.: The Kirillov–Reshetikhin conjecture and solutions of T-systems. J. Reine Angew. Math. 596, 63–87 (2006)zbMATHMathSciNetGoogle Scholar
  16. 16.
    Iorgov, N., Molev, A.I., Ragoucy, E.: Casimir elements from the Brauer–Schur–Weyl duality. J. Algebra 387, 144–159 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Isaev, A.P., Molev, A.I., Ogievetsky, O.V.: A new fusion procedure for the Brauer algebra and evaluation homomorphisms. Int. Math. Res. Not. 2012, no. 11, 2571–2606Google Scholar
  18. 18.
    Knight, H.: Spectra of tensor products of finite-dimensional representations of Yangians. J. Algebra 174, 187–196 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Kuniba, A., Suzuki, J.: Analytic Bethe ansatz for fundamental representations of Yangians. Commun. Math. Phys. 173, 225–264 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Kuniba, A., Ohta, Y., Suzuki, J.: Quantum Jacobi–Trudi and Giambelli formulae for U q(B r (1)) from the analytic Bethe ansatz. J. Phys. A 28, 6211–6226 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Kuniba, A., Okado, M., Suzuki, J., Yamada, Y.: Difference L operators related to q-characters. J. Phys. A 35, 1415–1435 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Kuniba, A., Nakanishi, T., Suzuki, J.: T-systems and Y -systems in integrable systems. J. Phys. A 44(10), 103001 (2011)CrossRefMathSciNetGoogle Scholar
  23. 23.
    Molev, A.: Yangians and Classical Lie Algebras. Mathematical Surveys and Monographs, vol. 143. American Mathematical Society, Providence (2007)Google Scholar
  24. 24.
    Molev, A.I.: Feigin–Frenkel center in types B, C and D. Invent. Math. 191, 1–34 (2013)Google Scholar
  25. 25.
    Molev, A.I., Ragoucy, E.: The MacMahon Master Theorem for right quantum superalgebras and higher Sugawara operators for \(\widehat{\mathfrak{g}\mathfrak{l}}_{m\vert n}\). Moscow Math. J. 14, 83–119 (2014)zbMATHGoogle Scholar
  26. 26.
    Mukhin, E., Young, C.A.S.: Path description of type B q-characters. Adv. Math. 231, 1119–1150 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Mukhin, E., Young, C.A.S.: Extended T-systems. Selecta Math. (N.S.) 18, 591–631 (2012)Google Scholar
  28. 28.
    Mukhin, E., Tarasov, V., Varchenko, A.: Bethe eigenvectors of higher transfer matrices. J. Stat. Mech. Theory Exp. 2006, no. 8, P08002, 44 ppGoogle Scholar
  29. 29.
    Mukhin, E., Tarasov, V., Varchenko, A.: Bethe algebra of Gaudin model, Calogero-Moser space and Cherednik algebra. Int. Math. Res. Not. 2014, no. 5, 1174–1204Google Scholar
  30. 30.
    Nakai, W., Nakanishi, T.: Paths, tableaux and q-characters of quantum affine algebras: the C n case. J. Phys. A 39, 2083–2115 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Nakai, W., Nakanishi, T.: Paths and tableaux descriptions of Jacobi–Trudi determinant associated with quantum affine algebra of type D n. J. Algebraic Combin. 26, 253–290 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    Nakajima, H.: t-analogs of q-characters of Kirillov-Reshetikhin modules of quantum affine algebras. Represent. Theory 7, 259–274 (2003)zbMATHMathSciNetGoogle Scholar
  33. 33.
    Nazarov, M.L.: Quantum Berezinian and the classical Capelli identity. Lett. Math. Phys. 21, 123–131 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  34. 34.
    Okounkov, A.: Quantum immanants and higher Capelli identities. Transform. Groups 1, 99–126 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  35. 35.
    Reshetikhin, N.Yu., Takhtajan, L.A., Faddeev, L.D.: Quantization of Lie groups and Lie algebras. Leningrad Math. J. 1, 193–225 (1990)zbMATHMathSciNetGoogle Scholar
  36. 36.
    Talalaev, D.V.: The quantum Gaudin system. Funct. Anal. Appl. 40, 73–77 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  37. 37.
    Zamolodchikov, A.B., Zamolodchikov, Al.B.: Factorized S-matrices in two dimensions as the exact solutions of certain relativistic quantum field models. Ann. Phys. 120, 253–291 (1979)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsUniversity of SydneySydneyAustralia
  2. 2.Department of Mathematical SciencesIndiana University – Purdue University IndianapolisIndianapolisUSA

Personalised recommendations