Advertisement

Real Root Isolation of Regular Chains

  • François Boulier
  • Changbo Chen
  • François Lemaire
  • Marc Moreno Maza
Conference paper

Abstract

We present an algorithm RealRootIsolate for isolating the real roots of a polynomial system given by a zerodimensional squarefree regular chain. The output of the algorithm is guaranteed in the sense that all real roots are obtained and are described by boxes of arbitrary precision. Real roots are encoded with a hybrid representation, combining a symbolic object, namely a regular chain and a numerical approximation given by intervals. Our algorithm is a generalization, for regular chains, of the algorithm proposed by Collins and Akritas. We have implemented RealRootIsolate as a command of the module SemiAlgebraicSetTools of the RegularChains library in Maple. Benchmarks are reported.

Keywords

Real Root Algebraic Number Polynomial System Univariate Polynomial Regular Chain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Akritas, A.G.: There is no Uspensky’s method. In: proceedings of ISSAC (1986)Google Scholar
  2. 2.
    Akritas, A.G., Strzeboński, A.W., Vigklas, P.S.: Implementations of a new theorem for computing bounds for positive roots of polynomials. Comput. 78(4), 355–367 (2006)CrossRefzbMATHGoogle Scholar
  3. 3.
    Akritas, A.G., Vigklas, P.S.: A comparison of various methods for computing bounds for positive roots of polynomials. J. Univ. Comput. Sci. 13(4), 455–467 (2007)MathSciNetGoogle Scholar
  4. 4.
    Becker, E., Mora, T., Marinari, M.G., Traverso, C.: The shape of the shape lemma. In: Proceedings of the International Symposium on Symbolic and Algebraic Computation, pp. 129–133. ACM Press, New York, USA (1994)Google Scholar
  5. 5.
    Cheng, J.S., Gao, X.S., Yap, C.K.: Complete numerical isolation of real roots in zero-dimensional triangular systems. Journal of Symbolic Computation 44(7), 768–785 (2009). http://www.sciencedirect.com/science/article/B6WM7-4TKPVBT-1/2/34927cd53d447d69e3b126d3fa93006a
  6. 6.
    Collins, G.E., Akritas, A.G.: Polynomial real root isolation using Descartes’rule of signs. In: proceedings of ISSAC’76, pp. 272–275. Yorktown Heights NY (1976)Google Scholar
  7. 7.
    Collins, G.E., Johnson, J.R., Krandick, W.: Interval arithmetic in cylindrical algebraic decomposition. J. Symb. Comput. 34(2), 145–157 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Dahan, X., Moreno Maza, M., Schost, É., Wu, W., Xie, Y.: Lifting techniques for triangular decompositions. In: ISSAC’05, pp. 108–115. ACM Press (2005)Google Scholar
  9. 9.
    Dahan, X., Schost, É.: Sharp estimates for triangular sets. In: ISSAC 04, pp. 103–110. ACM (2004)Google Scholar
  10. 10.
    Della Dora, J., Dicrescenzo, C., Duval, D.: About a new method for computing in algebraic number fields. In: Proceedings of EUROCAL 85 Vol. 2, Lect. Notes in Comp. Sci. vol. 204, pp. 289–290. Springer (1985)Google Scholar
  11. 11.
    Descartes, R.: Géométrie (1636)Google Scholar
  12. 12.
    Eigenwillig, A., Kettner, L., Krandick, W., Mehlhorn, K., Schmitt, S., Wolpert, N.: A descartes algorithm for polynomials with bit-stream coefficients. In: CASC, vo. 3718 of LNCS, pp. 138–149. Springer (2005)Google Scholar
  13. 13.
    Faugère, J.C.: A new efficient algorithm to compute Gröbner bases (\(F_4\)). J. Pure Appl. Algebra 139, 61–88 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Johnson, J.R., Krandick, W.: Polynomial real root isolation using approximate arithmetic. In: Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation, pp. 225–232. ACM (1997)Google Scholar
  15. 15.
    Leiserson, C.E., Li, L., Moreno Maza, M., Xie, Y.: Efficient evaluation of large polynomials. In: Proceedings of International Congress of Mathematical Software—ICMS 2010. Springer (2010)Google Scholar
  16. 16.
    Lemaire, F., Moreno Maza, M., Xie, Y.: The RegularChains library. In: Ilias S. Kotsireas (ed.) Maple Conference 2005, pp. 355–368 (2005)Google Scholar
  17. 17.
    Li, X., Moreno Maza, M., Pan, W.: Computations modulo regular chains. In: proceedings of ISSAC’09, pp. 239–246. ACM Press, New York, USA (2009)Google Scholar
  18. 18.
    Li, X., Moreno Maza, M., Rasheed, R., Schost, É.: The modpn library: Bringing fast polynomial arithmetic into maple. In: MICA’08 (2008)Google Scholar
  19. 19.
    Lu, Z., He, B., Luo, Y., Pan, L.: An algorithm of real root isolation for polynomial systems. In: Wang, D., Zhi, L. (eds.) Proceedings of Symbolic Numeric Computation 2005, pp. 94–107 (2005)Google Scholar
  20. 20.
    McCallum, S.: An improved projection operation for cylindrical algebraic decomposition. In: Caviness, B.F., Johnson, J.R. (eds.) Quantifier Elimination and Cylindrical Algebraic Decomposition, pp. 242–268. Springer (1988)Google Scholar
  21. 21.
    Moreno Maza, M.: On triangular decompositions of algebraic varieties. Tech. Rep. TR 4, 99, NAG Ltd, Oxford, UK, : presented at the MEGA-2000 Conference. Bath, England (1999)Google Scholar
  22. 22.
    Mourrain, B., Pavone, J.P.: Subdivision methods for solving polynomial equations. Tech. rep., INRIA (Aug 2005), (number RR-5658)Google Scholar
  23. 23.
    Mourrain, B., Rouillier, F., Roy, M.F.: The bernstein basis and real root isolation. Comb. Comput. Geom., MSRI Publ. 52, 459–478 (2005)MathSciNetGoogle Scholar
  24. 24.
    Rioboo, R.: Real algebraic closure of an ordered field, implementation in axiom. In: Proceedings of ISSAC’92, pp. 206–215. ISSAC, ACM Press (1992)Google Scholar
  25. 25.
    Rioboo, R.: Towards faster real algebraic numbers. J. Symb. Comput. 36(3–4), 513–533 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Rouillier, F.: Solving zero-dimensional systems through the rational univariate representation. AAECC 9, 433–461 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Rouillier, F., Revol, N.: The multiple precision floating-point interval library (MPFI) library. http://gforge.inria.fr/projects/mpfi/
  28. 28.
    Rouillier, F., Zimmermann, P.: Efficient isolation of polynomial real roots. J. Comput. Appl. Math. 162(1), 33–50 (2003)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Serret, J.A.: Cours d’Algèbre Supérieure, 4th edn. Gauthier-Villars, Paris (1877)zbMATHGoogle Scholar
  30. 30.
    Uspensky, J.V.: Theory of Equations. McGraw-Hill Co., New York (1948)Google Scholar
  31. 31.
    von zur Gathen, J., Gerhard, J.: Fast algorithms for taylor shifts and certain difference equations. In: ISSAC, pp. 40–47 (1997).Google Scholar
  32. 32.
    Xia, B., Yang, L.: An algorithm for isolating the real solutions of semi-algebraic systems. J. Symb. Comput. 34(5), 461–477 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Xia, B., Zhang, T.: Real solution isolation using interval arithmetic. Comput. Math. Appl. 52(6–7), 853–860 (2006)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.LIFLUniversité de Lille 1Villeneuve D’Ascq CedexFrance
  2. 2.ORCCAUniversity of Western Ontario (UWO)LondonCanada
  3. 3.Chongqing Key Laboratory of Automated Reasoning and CognitionChongqing Institute of Green and Intelligent Technology, Chinese Academy of SciencesChongqingChina

Personalised recommendations