ImUp: A Maple Package for Uniformity-Improved Reparameterization of Plane Curves

  • Jing Yang
  • Dongming Wang
  • Hoon Hong
Conference paper


We present a software package for computing piecewise rational reparameterizations of parametric plane curves, which have improved uniformities of angular speed. The package ImUp is implemented in Maple on the basis of some recently developed algorithms of reparameterization using piecewise Möbius transformations. We discuss some implementation issues and illustrate the capability and performance of the public functions of ImUp with examples and experiments. It is shown that the quality of plots of plane curves may be effectively improved by means of reparameterization using ImUp.


Parametric plane curve Angular speed uniformity  Möbius transformation ImUp package Piecewise reparameterization 



This work was supported partially by the Open Fund of SKLSDE (Grant No. SKLSDE-2011KF-02) and ANR-NSFC Project EXACTA (Grant No. ANR-09-BLAN-0371-01/60911130369).


  1. 1.
    Yang, J., Wang, D., Hong, H.: Improving angular speed uniformity by optimal \(C^0\) piecewise reparameterization. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov E.V. (eds.) Proceedings of the 14th International Workshop on Computer Algebra in Scientific Computing (Maribor, Slovenia, September 3–6, 2012), pp. 349–360, LNCS 7442, Springer, Heidelberg (2012)Google Scholar
  2. 2.
    Yang, J., Wang, D., Hong, H.: Improving angular speed uniformity by \(C^1\) piecewise reparameterization. In: Ida, T., Fleuriot, J. (eds.) Proceedings of the 9th International Workshop on Automated Deduction in Geometry (Edinburgh, UK, September 17–19, 2012), pp. 33–47. Springer, Berlin/Heidelberg (2013)Google Scholar
  3. 3.
    Yang, J., Wang, D., Hong, H.: Improving angular speed uniformity by reparameterization. Comput. Aided Geom. Des. 30(7), 636–652 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Costantini, P., Farouki, R., Manni, C., Sestini, A.: Computation of optimal composite re-parameterizations. Comput. Aided Geom. Des. 18(9), 875–897 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Farouki, R.: Optimal parameterizations. Comput. Aided Geom. Des. 14(2), 153–168 (1997)Google Scholar
  6. 6.
    Jüttler, B.: A vegetarian approach to optimal parameterizations. Comput. Aided Geom. Des. 14(9), 887–890 (1997)CrossRefzbMATHGoogle Scholar
  7. 7.
    Liang, X., Zhang, C., Zhong, L., Liu, Y.: \(C^1\) continuous rational reparameterization using monotonic parametric speed partition. In: Proceedings of the 9th International Conference on Computer-Aided Design and Computer Graphics (Hong Kong, December 7–10, 2005), pp. 16–21, IEEE Computer Society (2005)Google Scholar
  8. 8.
    Patterson, R., Bajaj, C.: Curvature adjusted parameterization of curves. Computer Science Technical Report CSD-TR-907, Paper 773, Purdue University, USA (1989)Google Scholar
  9. 9.
    Zoutendijk, G.: Methods of Feasible Directions: A Study in Linear and Nonlinear Programming. Elsevier Publishing Company, Amsterdam/New York (1960)Google Scholar
  10. 10.
    Curves of high degree: (2013). Accessed 11 September 2013
  11. 11.
    Hong, H., Wang, D., Yang, J.: A framework for improving uniformity of parameterizations of curves. Sci. China Inf. Sci. 56(10), 108101:1–108101:22 (2013).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.LMIB – School of Mathematics and Systems ScienceBeihang UniversityBeijingChina
  2. 2.Laboratoire D’Informatique de Paris 6CNRS – Université Pierre et Marie CurieParis Cedex 05France
  3. 3.Department of MathematicsNorth Carolina State UniversityRaleighUSA

Personalised recommendations