An Incremental Algorithm for Computing Cylindrical Algebraic Decompositions

Conference paper

Abstract

In this paper, we propose an incremental algorithm for computing cylindrical algebraic decompositions. The algorithm consists of two parts: computing a complex cylindrical tree and refining this complex tree into a cylindrical tree in real space. The incrementality comes from the first part of the algorithm, where a complex cylindrical tree is constructed by refining a previous complex cylindrical tree with a polynomial constraint. We have implemented our algorithm in Maple. The experimentation shows that the proposed algorithm outperforms existing ones for many examples taken from the literature.

References

  1. 1.
    Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic decomposition. Springer Lect. Notes Comput. Sci. 33, 515–532 (1975)Google Scholar
  2. 2.
    Arnon, D.S., Collins, G.E., McCallum, S.: Cylindrical algebraic decomposition II: an adjacency algorithm for the plane. SIAM J. Computing 13(4), 878–889 (1984)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Brown, C.W.: Improved projection for cylindrical algebraic decomposition. J. Symb. Comput. 32(5), 447–465 (2001)CrossRefMATHGoogle Scholar
  4. 4.
    Caviness, B., Johnson, J. (eds.): Quantifier Elimination and Cylindical Algebraic Decomposition, Texts and Mongraphs in Symbolic Computation. Springer, Berlin (1998)Google Scholar
  5. 5.
    Hong, H.: An improvement of the projection operator in cylindrical algebraic decomposition. In: ISSAC’90, pp. 261–264. ACM (1990)Google Scholar
  6. 6.
    McCallum, S.: An improved projection operation for cylindrical algebraic decomposition of 3-dimensional space. J. Symb. Comput. 5(1–2), 141–161 (1988)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Collins, G.E., Hong, H.: Partial cylindrical algebraic decomposition. J. Symb. Comput. 12(3), 299–328 (1991)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    McCallum, S.: Solving polynomial strict inequalities using cylindrical algebraic decomposition. The Computer Journal 36(5), 432–438 (1993)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Strzeboński, A.: Solving systems of strict polynomial inequalities. J. Symb. Comput. 29(3), 471–480 (2000)CrossRefMATHGoogle Scholar
  10. 10.
    Collins, G.E., Johnson, J.R., Krandick, W.: Interval arithmetic in cylindrical algebraic decomposition. J. Symb. Comput. 34(2), 145–157 (2002)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Dolzmann, A., Seidl, A., Sturm, T.: Efficient projection orders for CAD. In: Proceedings of ISSAC’04, pp. 111–118. ACM (2004)Google Scholar
  12. 12.
    Brown, C.W., McCallum, S.: On using bi-equational constraints in CAD construction. In: ISSAC’05, pp. 76–83 (2005)Google Scholar
  13. 13.
    Collins, G.E.: Quantifier elimination by cylindrical algebraic decomposition—twenty years of progress. In: Caviness, B., Johnson, J., (eds.) Quantifier Elimination and Cylindrical Algebraic Decomposition, pp. 8–23. Springer, Berlin (1998)Google Scholar
  14. 14.
    McCallum, S.: On propagation of equational constraints in CAD-based quantifier elimination. In: Proceedings of ISSAC’01, pp. 223–231 (2001)Google Scholar
  15. 15.
    McCallum, S., Brown, C.W.: On delineability of varieties in CAD-based quantifier elimination with two equational constraints. In: Proceedings of ISSAC’09, pp. 71–78 (2009)Google Scholar
  16. 16.
    Brown, C.W.: Qepcad b: a program for computing with semi-algebraic sets using CADs. SIGSAM Bull. 37(4), 97–108 (2003)CrossRefMATHGoogle Scholar
  17. 17.
    Hong, H., et al.: QEPCAD B, www.usna.edu/Users/cs/qepcad/Google Scholar
  18. 18.
    Strzeboński, A.: Cylindrical algebraic decomposition using validated numerics. J. Symb. Comput. 41(9), 1021–1038 (2006)CrossRefMATHGoogle Scholar
  19. 19.
    Dolzmann, A., Sturm, T.: Redlog computer algebra meets computer logic. ACM SIGSAM Bull. 31, 2–9 (1996)CrossRefGoogle Scholar
  20. 20.
    Iwane, H., Yanami, H., Anai, H., Yokoyama, K.: An effective implementation of a symbolic-numeric cylindrical algebraic decomposition for quantifier elimination. In: Proceedings of SNC’2009, pp. 55–64 (2009)Google Scholar
  21. 21.
    Chen, C., Moreno Maza, M., Xia, B., Yang, L.: Computing cylindrical algebraic decomposition via triangular decomposition. In: ISSAC’09, pp. 95–102 (2009)Google Scholar
  22. 22.
    McCallum, S.: An improved projection operator for cylindrical algebraic decomposition. In: Caviness, B., Johnson, J., (eds.) Quantifier Elimination and Cylindical Algebraic Decomposition, Texts and Mongraphs in Symbolic Computation. Springer (1998)Google Scholar
  23. 23.
    Buchberger, B., Hong, H.: Speeding-up quantifier elimination by Gröbner bases. Technical Report 91–06, RISC (Research Institute for Symbolic Computation), Johannes Kepler University, Linz, Austria, Feb 1991Google Scholar
  24. 24.
    Wilson, D.J., Bradford, R.J., Davenport, J.H.: Speeding up cylindrical algebraic decomposition by Gröbner bases. In: AISC/MKM/Calculemus, pp. 280–294 (2012)Google Scholar
  25. 25.
    Chen, C.: Solving Polynomial Systems via Triangular Decomposition. PhD thesis, University of Western Ontario (2011)Google Scholar
  26. 26.
    Chen, C., Moreno Maza, M.: Algorithms for computing triangular decompositions of polynomial systems. In: Proceedings of ISSAC’11, pp. 83–90 (2011)Google Scholar
  27. 27.
    Moreno Maza, M.: On triangular decompositions of algebraic varieties. Technical Report TR 4/99, NAG Ltd, Oxford, UK, 1999. http://www.csd.uwo.ca/moreno
  28. 28.
    Strzeboński, A.: Computation with Semialgebraic Sets Represented by Cylindrical Algebraic Formulas. In: Proceedings of ISSAC’2010, pp. 61–68, (2010)Google Scholar
  29. 29.
    Dahan, X., Moreno Maza, M., Schost, É., Wu, W., Xie, Y.: Lifting techniques for triangular decompositions. In: ISSAC’05, pp. 108–115. ACM Press (2005)Google Scholar
  30. 30.
    Thomas, J.M.: Differential System. American Mathematical Society, New York (1937)Google Scholar
  31. 31.
    Wang, D.M.: Decomposing polynomial systems into simple systems. J. Symb. Comp. 25(3), 295–314 (1998)CrossRefMATHGoogle Scholar
  32. 32.
    Bächler, T., Gerdt, V., Lange-Hegermann, M., Robertz, D.: Thomas decomposition of algebraic and differential systems. In: Proceedings of CASC’10, pp. 31–54 (2010)Google Scholar
  33. 33.
    Brown, C.W., Davenport, J.H.: The complexity of quantifier elimination and cylindrical algebraic decomposition. In: Proceedings of ISSAC’07, pp. 54–60Google Scholar
  34. 34.
    Wang, D.M.: Computing triangular systems and regular systems. J. Sym. Comp. 30(2), 221–236 (2000)CrossRefMATHGoogle Scholar
  35. 35.
    Ducos, L.: Optimizations of the subresultant algorithm. J. Pure Appl. Algebra 145, 149–163 (2000)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Mishra, B.: Algorithmic Algebra. Springer, New York (1993)CrossRefMATHGoogle Scholar
  37. 37.
    Chen, C., Moreno Maza, M.: Algorithms for computing triangular decomposition of polynomial systems. J. Symb. Comput. 47(6), 610–642 (2012)Google Scholar
  38. 38.
    Boulier, F., Chen, C., Lemaire, F., Moreno Maza, M.: Real root isolation of regular chains. In: Proceedings of ASCM’09, pp. 15–29 (2009)Google Scholar
  39. 39.
    Chen, C., Golubitsky, O., Lemaire, F., Moreno Maza, M., Pan, W.: Comprehensive triangular decomposition. In: Proceedings of CASC’07, vol. 4770 of Lecture Notes in Computer Science, pp. 73–101. Springer (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Chongqing Key Laboratory of Automated Reasoning and CognitionChongqing Institute of Green and Intelligent Technology, Chinese Academy of SciencesChongqingChina
  2. 2.ORCCAUniversity of Western OntarioLondonCanada

Personalised recommendations