Advertisement

Efficacy of a Virtual Environment for Training Ball Passing Skills in Rugby

  • Helen C. Miles
  • Serban R. Pop
  • Simon J. Watt
  • Gavin P. Lawrence
  • Nigel W. John
  • Vincent Perrot
  • Pierre Mallet
  • Daniel R. Mestre
  • Kenton Morgan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8490)

Abstract

We have designed a configurable virtual environment to train rugby ball passing skills. Seeking to validate the system’s ability to correctly aid training, two experiments were performed. Ten participants took part in ball passing activities, which were used to compare the combinations of different user positions relative to the physical screen, the use of stereoscopic presentation and the use of a floor screen to extend the field of view of the virtual scene. Conversely to what was expected, the results indicate that the participants did not respond well to simulated target distances, and only the users physical distance from the screen had an effect on the distance thrown.

Keywords

distance perception stereoscopy rugby 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bideau, B., Multon, F., Kulpa, R., Fradet, L., Arnaldi, B., Delamarche, P.: Using virtual reality to analyze links between handball thrower kinematics and goalkeepers reactions. Neurosci. Lett. 372(1-2), 119–122 (2004)CrossRefGoogle Scholar
  2. 2.
    Bideau, B., Kulpa, R., Menardais, S., Fradet, L., Multon, F., Delamarche, P., Arnaldi, B.: Real handball goalkeeper vs. virtual handball thrower. Presence–Teleop. Virt. 12(4), 411–422 (2003)CrossRefGoogle Scholar
  3. 3.
    Xu, S., Song, P., Chin, C.L., Chua, G., Huang, Z., Rahardja, S.: Tennis Space: an interactive and immersive environment for tennis simulation. In: ICGIP, pp. 652–657 (2009)Google Scholar
  4. 4.
    Brunnett, G., Rusdorf, S., Lorenz, M.: V-Pong: an immersive table tennis simulation. IEEE Comp. Graph. 26(4), 10–13 (2006)CrossRefGoogle Scholar
  5. 5.
    Li, Y., Shark, L.K., Hobbs, S.J., Ingham, J.: Real-time immersive table tennis game for two players with motion tracking. In: IEEE–IV, pp. 500–505 (2010)Google Scholar
  6. 6.
    Kelly, P., Healy, A., Moran, K., O’Connor, N.E.: A virtual coaching environment for improving golf swing technique. In: ACM–MM SMVC, p. 51 (2010)Google Scholar
  7. 7.
    Govil, A., You, S., Neumann, U.: A video-based augmented reality golf simulator. In: ACM–MM, pp. 489–490 (2000)Google Scholar
  8. 8.
    Ahn, S.H., Kang, K.B., Kim, E.J., Kim, S.J., Lee, J.W., Song, C.G.: Interactive 3D Golf Simulator. LNCS (2006)Google Scholar
  9. 9.
    Gray, R.: Behavior of college baseball players in a virtual batting task. J. Exp. Psychol. Human 28(5), 1131–1148 (2002)CrossRefGoogle Scholar
  10. 10.
    Fink, P.W., Foo, P.S., Warren, W.H.: Catching fly balls in virtual reality: a critical test of the outfielder problem. J. Vis. 9(13(14)), 1–8 (2009)Google Scholar
  11. 11.
    Syamsuddin, M.R., Kwon, Y.M.: Simulation of baseball pitching and hitting on virtual world. In: CISIS, pp. 663–667 (2011)Google Scholar
  12. 12.
    Chung, J., Xu, K., Colaco, A., Schmandt, C., Li, V.O.K.: My Second Bike: a tv-enabled social and interactive riding experience. In: IEEE–CCNC, pp. 1–5 (2010)Google Scholar
  13. 13.
    Fels, S., Kinoshita, Y., Takama, Y., Yohanan, S., Gadd, A., Takahashi, S., Funahashi, K.: Swimming across the Pacific: a VR swimming interface. IEEE Comp. Graph. 25(1), 24–31 (2005)CrossRefGoogle Scholar
  14. 14.
    John, N.W.: Design and implementation of medical training simulators. Virtual Reality 12(4), 269–279 (2008)CrossRefGoogle Scholar
  15. 15.
    Hays, R.T., Jacobs, J.W., Prince, C., Salas, E.: Flight simulator training effectiveness: a meta-analysis. Mil. Psychol. 4(2), 63–74 (1992)CrossRefGoogle Scholar
  16. 16.
    Crivella, R., Daly, B., Schaaf, R., Ventura, D., Camill, T., Hodgins, J., Pausch, R.: Training for physical tasks in virtual environments: tai chi. In: IEEE–VR, pp. 87–94 (2003)Google Scholar
  17. 17.
    Thales Group: Thales tackles scrum simulation Thales Group Press Release (June 04, 2013), http://tinyurl.com/lnbp358 (accessed: May 28, 2013)
  18. 18.
    Westcott, R.: Trying out Fernando Alonso’s Ferrari F1 simulator. BBC News website (April 19, 2013), http://www.bbc.co.uk/news/technology-22218163 (accessed: May 28, 2013)
  19. 19.
    Ruffaldi, E., Bardy, B., Gopher, D., Bergamasco, M.: Feedback, affordances, and accelerators for training sports in virtual environments. Presence–Teleop. Virt. 20(1), 33–46 (2011)CrossRefGoogle Scholar
  20. 20.
    Chong, A.K., Mileburn, P., Newsham West, R., ter Voert, M., Croft, H.: Recent practical applications of close-range photogrammetry for complex motion study. ISPRS J. Photogramm. XXXVII(Part B5), 921–926 (2008)Google Scholar
  21. 21.
    Chong, A.K., Croft, H.: A photogrammetric application in virtual sport training. Photogramm. Rec. 24(125), 51–65 (2009)CrossRefGoogle Scholar
  22. 22.
    Brook, P., Croft, H., Mann, S.: Laser based line-out simulator. NACCQ, 265 (2007)Google Scholar
  23. 23.
    Bideau, B., Kulpa, R., Vignais, N., Brault, S., Multon, F., Craig, C.: Virtual reality, a serious game for understanding performance and training players in sport. IEEE Comp. Graph. 30, 14–21 (2010)CrossRefGoogle Scholar
  24. 24.
    Brault, S., Bideau, B., Kulpa, R., Craig, C.: Detecting deceptive movement in 1 vs. 1 based on global body displacement of a rugby player. IJVR 8(4), 31–36 (2009)Google Scholar
  25. 25.
    Brault, S., Bideau, B., Kulpa, R.: How the global body displacement of a rugby player can be used to detect deceptive movement in 1 vs. 1. Laval–Virtual, 161–166 (2009)Google Scholar
  26. 26.
    Brault, S., Bideau, B., Craig, C., Kulpa, R.: Balancing deceit and disguise: how to successfully fool the defender in a 1 vs. 1 situation in rugby Hum. Movement Sci. 29(3), 412–425 (2010)CrossRefGoogle Scholar
  27. 27.
    Vignais, N., Bideau, B., Craig, C., Brault, S., Multon, F., Delamarche, P.: Does the level of graphical detail of a virtual handball thrower influence a goalkeepers motor response? J. Sport Sci. Med. 8(4), 501–508 (2009)Google Scholar
  28. 28.
    Miles, H.C., Pop, S.R., Watt, S.J., Lawrence, G.P., John, N.W.: A review of virtual environments for training in ball sports. Comput. Graph. 36(6), 714–726 (2012)CrossRefGoogle Scholar
  29. 29.
    Bray, K., Kerwin, D.G.: Modelling the flight of a soccer ball in a direct free kick. J. Sport Sci. 21(2), 75–85 (2003)CrossRefGoogle Scholar
  30. 30.
    Vance, A.J., Buick, J.M., Livesey, J.: Aerodynamics of a rugby ball. J. Appl. Mech. 79(2), 021020-1–021020-5 (2012)Google Scholar
  31. 31.
    Ijsselsteijn, W., Ridder, H., Freeman, J.: Effects of stereoscopic presentation, image motion, and screen size on subjective and objective corroborative measures of presence. Presence–Teleop. Virt. 10(3), 298–311 (2001)CrossRefGoogle Scholar
  32. 32.
    Luo, X., Kenyon, R., Kamper, D., Sandin, D., DeFanti, T.: The effects of scene complexity, stereovision, and motion parallax on size constancy in a virtual environment. In: IEEE–VR, pp. 59–66 (2007)Google Scholar
  33. 33.
    Watt, S.J., MacKenzie, K.J.: 3D media and the human visual system. Emerging Technologies for 3D Video: Creation, Coding, Transmission, and Rendering, 349 (2013)Google Scholar
  34. 34.
    Creem-Regehr, S.H., Willemsen, P., Gooch, A.A., Thompson, W.B.: The influence of restricted viewing conditions on egocentric distance perception: implications for real and virtual indoor environments. Perception 34(2), 191–204 (2005)CrossRefGoogle Scholar
  35. 35.
    Willemsen, P., Colton, M., Creem-Regehr, S.H., Thompson, W.B.: The effects of head-mounted display mechanics on distance judgments in virtual environments. In: APGV, pp. 35–38 (2004)Google Scholar
  36. 36.
    Alexandrova, I., Teneva, P.: Egocentric distance judgments in a large screen display immersive virtual environment. In: APGV (2010)Google Scholar
  37. 37.
    Piryankova, I.V., de la Rosa, S., Kloos, U., Bülthoff, H.H., Mohler, B.J.: Egocentric distance perception in large screen immersive displays. Displays 34(2), 153–164 (2013)CrossRefGoogle Scholar
  38. 38.
    Interrante, V., Ries, B., Anderson, L.: Distance perception in immersive virtual environments, revisited. In: IEEE–VR, pp. 3–10 (2006)Google Scholar
  39. 39.
    Thomson, J.A.: Is continuous visual monitoring necessary in visually guided locomotion? J. Exp. Psychol. Human 9(3), 427–443 (1983)CrossRefGoogle Scholar
  40. 40.
    Steinicke, F., Bruder, G., Hinrichs, K.: Transitional environments enhance distance perception in immersive virtual reality systems. APGV 1(212), 19–26 (2009)CrossRefGoogle Scholar
  41. 41.
    Sahm, C.S., Creem-Regehr, S.H., Thompson, W.B., Willemsen, P.: Throwing versus walking as indicators of distance perception in similar real and virtual environments. ACM Trans. Appl. Percept. 2(1), 35–45 (2005)CrossRefGoogle Scholar
  42. 42.
    Renner, R., Velichkovsky, B., Helmert, J.: The perception of egocentric distances in Virtual Environments. ACM Comput. Surv. (to appear, 2014)Google Scholar
  43. 43.
    Bridgeman, B., Gemmer, A., Forsman, T., Huemer, V.: Processing spatial information in the sensorimotor branch of the visual system. Vision Res. 40(25), 3539–3552 (2000)CrossRefGoogle Scholar
  44. 44.
    Parks, T.E.: Visual-illusion distance paradoxes: a resolution. Atten. Percept. Psychophys. 74(8), 1568–1569 (2012)CrossRefGoogle Scholar
  45. 45.
    Goodale, M.A., Milner, A.D.: Separate visual pathways for perception and action. Trends Neurosci. 15(1), 20–25 (1992)CrossRefGoogle Scholar
  46. 46.
    Witmer, B.G., Singer, M.J.: Measuring Presence in Virtual Environments: A Presence Questionnaire. Presence–Teleop. Virt. 7(3), 225–240 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Helen C. Miles
    • 1
  • Serban R. Pop
    • 1
  • Simon J. Watt
    • 1
  • Gavin P. Lawrence
    • 1
  • Nigel W. John
    • 1
  • Vincent Perrot
    • 2
  • Pierre Mallet
    • 2
  • Daniel R. Mestre
    • 2
  • Kenton Morgan
    • 3
  1. 1.Bangor UniversityBangorUnited Kingdom
  2. 2.Aix-Marseille Université, CNRS, ISM UMR 7287Marseille cedex 09France
  3. 3.Rygbi Innovations Cyf.United Kingdom

Personalised recommendations