Discourse semantics based on dependent type theory, such as Ranta’s Type Theoretical Grammar, is expected to serve as a proof-theoretic alternative to standard, model-theoretic discourse semantics such as DRT and DPL. Its compositionality, however, with respect to anaphora and presupposition, has been left as an open problem, toward which several different approaches have been proposed. In this paper, I will point out that four problems still remain to be solved in the previous approaches, and present a compositional discourse theory that remedies this enterprise, by the combination of the following settings: 1) the context-passing mechanism, 2) @-operators for representing anaphora/presupposition triggers, 3) (bottom-up) semantic composition with raw terms, and 4) (top-down) anaphora resolution as type checking.


Noun Phrase Semantic Representation Dependent Type Type Check Categorial Grammar 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahn, R., Kolb, H.P.: Discourse representation meets constructive mathematics. In: Kalman, L., Polos, L. (eds.) Papers from the Second Symposium on Logic and Language (1990)Google Scholar
  2. 2.
    Barendregt, H.P.: Lambda calculi with types. In: Abramsky, S., Gabbay, D.M., Maibaum, T. (eds.) Handbook of Logic in Computer Science, vol. 2, pp. 117–309. Oxford Science Publications (1992)Google Scholar
  3. 3.
    Clark, H.H.: Bridging. In: Roger, S., L., N.W.B. (eds.) TINLAP 1975: Proceedings of the 1975 Workshop on Theoretical Issues in Natural Language Processing, pp. 169–174. Association for Computational Linguistics, Stroudsburg (1975)Google Scholar
  4. 4.
    Dávila-Pérez, R.: Semantics and Parsing in Intuitionistic Categorial Grammar. Ph.d. thesis, University of Essex (1995)Google Scholar
  5. 5.
    Evans, G.: Pronouns. Linguistic Inquiry 11, 337–362 (1980)Google Scholar
  6. 6.
    Fox, C., Lappin, S.: Type-theoretic approach to anaphora and ellipsis. In: Recent Advances in Natural Language Processing (RANLP 2003), Borovets, Bulgaria (2003)Google Scholar
  7. 7.
    Gazdar, G.: A cross-categorial semantics for conjunction. Linguistics and Philosophy 3, 407–409 (1980)CrossRefGoogle Scholar
  8. 8.
    Geach, P.: Reference and Generality: An Examination of Some Medieval and Modern Theories. Cornell University Press, Ithaca (1962)Google Scholar
  9. 9.
    Geurts, B.: Presuppositions and pronouns. Elsevier, Oxford (1999)Google Scholar
  10. 10.
    Groenendijk, J., Stokhof, M.: Dynamic predicate logic. Linguistics and Philosophy 14, 39–100 (1991)CrossRefzbMATHGoogle Scholar
  11. 11.
    de Groote, P.: Towards a montagovian account of dynamics. In: Gibson, M., Howell, J. (eds.) 16th Semantics and Linguistic Theory Conference (SALT16), pp. 148–155. CLC Publications, University of Tokyo (2006)Google Scholar
  12. 12.
    Hindley, J.R.: The principal type-scheme of an object in combinatory logic. Transactions of the American Mathematical Society 146, 29–60 (1969)zbMATHMathSciNetGoogle Scholar
  13. 13.
    Kamp, H.: A theory of truth and semantic representation. In: Groenendijk, J., Janssen, T.M., Stokhof, M. (eds.) Formal Methods in the Study of Language, Amsterdam (1981)Google Scholar
  14. 14.
    Karttunen, L.: Discourse referents. In: McCawley, J.D. (ed.) Syntax and Semantics 7: Notes from the Linguistic Underground, vol. 7, pp. 363–385. Academic Press, New York (1976)Google Scholar
  15. 15.
    Krahmer, E., Piwek, P.: Presupposition projection as proof construction. In: Bunt, H., Muskens, R. (eds.) Computing Meanings: Current Issues in Computational Semantics. Kluwer Academic Publishers, Dordrecht (1999)Google Scholar
  16. 16.
    Krause, P.: Presupposition and abduction in type theory. In: Klein, E., Manandhar, S., Nutt, W., Siekman, J. (eds.) Edinburgh Conference on Computational Logic and Natural Language Processing. HCRC, Edinburgh (1995)Google Scholar
  17. 17.
    Martin-Löf, P.: Intuitionistic Type Theory, vol. 17. Bibliopolis, Naples, Italy (1984), sambin, Giovanni (ed.)Google Scholar
  18. 18.
    Mineshima, K.: A presuppositional analysis of definite descriptions in proof theory. In: Satoh, K., Inokuchi, A., Nagao, K., Kawamura, T. (eds.) JSAI 2007. LNCS (LNAI), vol. 4914, pp. 214–227. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. 19.
    Piwek, P., Krahmer, E.: Presuppositions in context: Constructing bridges. In: Bonzon, P., Cavalcanti, M., Nossum, R. (eds.) Formal Aspects of Context. Applied Logic Series. Kluwer Academic Publishers, Dordrecht (2000)Google Scholar
  20. 20.
    Prawitz, D.: Intuitionistic logic: A philosophical challenge. In: von Wright, G. (ed.) Logics and Philosophy. Martinus Nijhoff, The Hague (1980)Google Scholar
  21. 21.
    Ranta, A.: Type-Theoretical Grammar. Oxford University Press (1994)Google Scholar
  22. 22.
    van der Sandt, R.: Presupposition projection as anaphora resolution. Journal of Semantics 9, 333–377 (1992)CrossRefGoogle Scholar
  23. 23.
    Steedman, M.J.: The Syntactic Process (Language, Speech, and Communication). The MIT Press, Cambridge (2000)Google Scholar
  24. 24.
    Sundholm, G.: Proof theory and meaning. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic, vol. III, pp. 471–506. Kluwer, Reidel (1986)CrossRefGoogle Scholar
  25. 25.
    Sundholm, G.: Constructive generalized quantifiers. Synthese 79, 1–12 (1989)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Daisuke Bekki
    • 1
    • 2
    • 3
  1. 1.Graduate School of Humanities and SciencesOchanomizu UniversityBunkyo-kuJapan
  2. 2.National Institute of InformaticsChiyoda-kuJapan
  3. 3.Japan Science and Technology AgencyCRESTKawaguchiJapan

Personalised recommendations