Advertisement

Monotonicity Reasoning in Formal Semantics Based on Modern Type Theories

  • Georgiana E. Lungu
  • Zhaohui Luo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8535)

Abstract

Modern type theories (MTTs) have been developed as a powerful foundation for formal semantics. In particular, it provides a useful platform for natural language inference (NLI) where proof assistants can be used for inference on computers. In this paper, we consider how monotonicity reasoning can be dealt in MTTs, so that it can contribute to NLI based on the MTT-semantics. We show that subtyping is crucial in monotonicity reasoning in MTTs because CNs are interpreted as types and therefore the monotonicity relations between CNs should be represented by the subtyping relations. In the past, monotonicity reasoning has only been considered for the arrow-types in the Montagovian setting of simple type theory. In MTT-semantics, richer type constructors involving dependent types and inductive types are employed in semantic representations. We show how to consider monotonicity reasoning that involve such type constructors and how this offers new useful mechanisms in monotonicity reasoning in MTTs.

Keywords

Type Theory Formal Semantic Proof Assistant Mass Noun Natural Language Semantic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barwise, J., Cooper, R.: Generalized quantifiers and natural language. Linguistics and Philosophy 4(2), 159–219 (1981)CrossRefzbMATHGoogle Scholar
  2. 2.
    Callaghan, P., Luo, Z.: An implementation of LF with coercive subtyping and universes. Journal of Automated Reasoning 27(1), 3–27 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Chatzikyriakidis, S., Luo, Z.: An account of natural language coordination in type theory with coercive subtyping. In: Duchier, D., Parmentier, Y. (eds.) CSLP 2012. LNCS, vol. 8114, pp. 31–51. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  4. 4.
    Chatzikyriakidis, S., Luo, Z.: Adjectives in a modern type-theoretical setting. In: Morrill, G., Nederhof, M.-J. (eds.) FG 2012/2013. LNCS, vol. 8036, pp. 159–174. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  5. 5.
    Chatzikyriakidis, S., Luo, Z.: Natural language inference in Coq. In: EACL Workshop on Type Theory and Natural Language Semantics, Goteborg (2013) (submitted manuscript)Google Scholar
  6. 6.
    Chatzikyriakidis, S., Luo, Z.: Natural language reasoning using proof assistant technology: Rich typing and beyond. In: EACL Workshop on Type Theory and Natural Language Semantics. Goteborg (2014)Google Scholar
  7. 7.
    The Coq Development Team. The Coq Proof Assistant Reference Manual (Version 8.1), INRIA (2007)Google Scholar
  8. 8.
    Dowty, D.: The role of negative polarity and concord marking in natural language reasoning. In: Proc of the 4th SALT Conference (1994)Google Scholar
  9. 9.
    Huijben, R.: A Coq module for natural logic. Master’s thesis, Technische Universiteit Eindhoven (2013)Google Scholar
  10. 10.
    Luo, Z.: Computation and Reasoning: A Type Theory for Computer Science. Oxford University Press (1994)Google Scholar
  11. 11.
    Luo, Z.: Coercive subtyping. Journal of Logic and Computation 9(1), 105–130 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Luo, Z.: Type-theoretical semantics with coercive subtyping. In: Semantics and Linguistic Theory 20 (SALT20), Vancouver (2010)Google Scholar
  13. 13.
    Luo, Z.: Common nouns as types. In: Béchet, D., Dikovsky, A. (eds.) LACL 2012. LNCS, vol. 7351, pp. 173–185. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  14. 14.
    Luo, Z.: Formal semantics in modern type theories with coercive subtyping. Linguistics and Philosophy 35(6), 491–513 (2012)CrossRefGoogle Scholar
  15. 15.
    Luo, Z., Adams, R.: Structural subtyping for inductive types with functorial equality rules. Mathematical Structures in Computer Science 18(5) (2008)Google Scholar
  16. 16.
    Luo, Z., Pollack, R.: LEGO Proof Development System: User’s Manual. LFCS Report ECS-LFCS-92-211, Dept of Computer Science, Univ. of Edinburgh (1992)Google Scholar
  17. 17.
    Luo, Z., Soloviev, S., Xue, T.: Coercive subtyping: theory and implementation. Information and Computation 223 (2012)Google Scholar
  18. 18.
    MacCartney, B.: Natural Language Inference. PhD thesis, Stanford Universisty (2009)Google Scholar
  19. 19.
    The Matita proof assistant (2008), http://matita.cs.unibo.it/?
  20. 20.
    Purdy, W.C.: A logic for natural language. Notre Dame Journal of Formal Logic 32 (1991)Google Scholar
  21. 21.
    Quine, W.: Word & Object. MIT Press (1960)Google Scholar
  22. 22.
    Ranta, A.: Type-Theoretical Grammar. Oxford University Press (1994)Google Scholar
  23. 23.
    Sommers, F.: The Logic of Natural Language. Cambridge Univ. Press (1982)Google Scholar
  24. 24.
    van Benthem, J.: Essays in Logical Semantics. Reidel (1986)Google Scholar
  25. 25.
    van Benthem, J.: Language in Action: Categories, Lambdas and Dynamic Logic. Elsevier (1991)Google Scholar
  26. 26.
    van Eijck, J.: Natural logic for natural language. In: ten Cate, B.D., Zeevat, H.W. (eds.) TbiLLC 2005. LNCS (LNAI), vol. 4363, pp. 216–230. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  27. 27.
    Westerstahl, D., Peters, S.: Quantifiers in Language and Logic. Oxford University Press (2006)Google Scholar
  28. 28.
    Xue, T., Luo, Z.: Dot-types and their implementation. In: Béchet, D., Dikovsky, A. (eds.) LACL 2012. LNCS, vol. 7351, pp. 234–249. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Georgiana E. Lungu
    • 1
  • Zhaohui Luo
    • 1
  1. 1.Royal Holloway, University of London EghamSurreyU.K.

Personalised recommendations