The BWare Project: Building a Proof Platform for the Automated Verification of B Proof Obligations

  • David Delahaye
  • Catherine Dubois
  • Claude Marché
  • David Mentré
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8477)


We introduce BWare, an industrial research project that aims to provide a mechanized framework to support the automated verification of proof obligations coming from the development of industrial applications using the B method and requiring high integrity. The adopted methodology consists in building a generic verification platform relying on different automated theorem provers, such as first order provers and SMT (Satisfiability Modulo Theories) solvers. Beyond the multi-tool aspect of our methodology, the originality of this project also resides in the requirement for the verification tools to produce proof objects, which are to be checked independently. In this paper, we present some preliminary results of BWare, as well as some current major lines of work.


B Method Proof Obligations First Order Provers SMT Solvers Logical Frameworks Industrial Use Large Scale Study 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bobot, F., Conchon, S., Contejean, V., Iguernelala, M., Lescuyer, S., Mebsout, A.: Alt-Ergo , version 0.95.2. CNRS, Inria, and Université Paris-Sud (2013),
  2. 2.
    Bobot, F., Filliâtre, J.-C., Marché, C., Paskevich, A.: Why3: Shepherd Your Herd of Provers. In: Leino, K.R.M., Moskal, M. (eds.) International Workshop on Intermediate Verification Languages, Boogie, pp. 53–64 (2011)Google Scholar
  3. 3.
    Boespflug, M., Carbonneaux, Q., Hermant, O.: The λΠ-Calculus Modulo as a Universal Proof Language. In: Pichardie, D., Weber, T. (eds.) Proof Exchange for Theorem Proving, PxTP, vol. 878, pp. 28–43. CEUR Workshop Proceedings (2012)Google Scholar
  4. 4.
    Bonichon, R., Delahaye, D., Doligez, D.: Zenon: An Extensible Automated Theorem Prover Producing Checkable Proofs. In: Dershowitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS (LNAI), vol. 4790, pp. 151–165. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Burel, G.: Experimenting with Deduction Modulo. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS (LNAI), vol. 6803, pp. 162–176. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Burel, G.: A Shallow Embedding of Resolution and Superposition Proofs into the λΠ-Calculus Modulo. In: Blanchette, J.C., Urban, J. (eds.) Proof Exchange for Theorem Proving (PxTP). EPiC, vol. 14, pp. 43–57. EasyChair (2013)Google Scholar
  7. 7.
    Delahaye, D., Doligez, D., Gilbert, F., Halmagrand, P., Hermant, O.: Zenon Modulo: When Achilles Outruns the Tortoise Using Deduction Modulo. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR-19. LNCS, vol. 8312, pp. 274–290. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  8. 8.
    Mentré, D., Marché, C., Filliâtre, J.-C., Asuka, M.: Discharging Proof Obligations from Atelier B Using Multiple Automated Provers. In: Derrick, J., Fitzgerald, J., Gnesi, S., Khurshid, S., Leuschel, M., Reeves, S., Riccobene, E. (eds.) ABZ 2012. LNCS, vol. 7316, pp. 238–251. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • David Delahaye
    • 1
  • Catherine Dubois
    • 2
  • Claude Marché
    • 3
  • David Mentré
    • 4
  1. 1.Cedric/Cnam/InriaParisFrance
  2. 2.Cedric/ENSIIE/InriaÉvryFrance
  3. 3.Inria Saclay - Île-de-France & LRI, CNRSUniv. Paris-SudOrsayFrance
  4. 4.Mitsubishi Electric R&D Centre EuropeRennesFrance

Personalised recommendations