Advertisement

UAV Horizon Tracking Using Memristors and Cellular Automata Visual Processing

  • Ioannis Georgilas
  • Ella Gale
  • Andrew Adamatzky
  • Chris Melhuish
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8069)

Abstract

Unmanned Aerial Vehicles (UAV)s can control their altitude and orientation using the horizon as a reference. Typically this task is performed via edge-detection vision processing techniques implemented in a computer or digital electronics. We demonstrate a proof-of-principle for a memristive cellular automata (CA) system which can simply interface with an analog electronic control system. Our aim is a cheaper, lighter and more robust low-level system. Low-quality, noisy and wide-angle images consistent with cheap cameras have been tested and, even with these issues, the system can recognise the tilt angle and express it as relative activation of cells at the edge of a CA which could be used to drive motors to right the aircraft.

Keywords

Cellular automata Memristors Image processing UAV 

References

  1. 1.
    Ettinger, S., Nechyba, M., Ifju, P., Waszak, M.: Vision-guided flight stability and control for micro air vehicles. Adv. Robot. 17(7), 617–640 (2003)CrossRefGoogle Scholar
  2. 2.
    Shabayek, A., Demonceaux, C., Morel, O., Fofi, D.: Vision based uav attitude estimation: progress and insights. J. Intell. Rob. Syst. Theory Appl. 65(1–4), 295–308 (2012)CrossRefGoogle Scholar
  3. 3.
    Todorovic, S., Nechyba, M., Ifju, P.: Sky/ground modeling for autonomous mav flight. In: Proceedings of the IEEE International Conference on Robotics and Automation, ICRA’03, vol. 1, pp. 1422–1427 (2003)Google Scholar
  4. 4.
    Dusha, D., Boles, W., Walker, R.: Attitude estimation for a fixed-wing aircraft using horizon detection and optical flow. In: IEEE 9th Biennial Conference of the Australian Pattern Recognition Society on Digital Image Computing Techniques and Applications, pp. 485–492 (2007)Google Scholar
  5. 5.
    Chen, Y., Abushakra, A., Lee, J.: Vision-based horizon detection and target tracking for UAVs. In: Bebis, G., et al. (eds.) ISVC 2011, Part II. LNCS, vol. 6939, pp. 310–319. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  6. 6.
    Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453, 80–83 (2008)CrossRefGoogle Scholar
  7. 7.
    Chua, L.O.: Memristor - the missing circuit element. IEEE Trans. Circuit Theory 18, 507–519 (1971)CrossRefGoogle Scholar
  8. 8.
    Chua, L., Sbitnev, V., Kim, H.: Neurons are poised near the edge of chaos. Int. J. Bifurcat. Chaos 11, 1250098 (2012). (49pp)CrossRefGoogle Scholar
  9. 9.
    Chua, L., Sbitnev, V., Kim, H.: Hodgkin-huxley axon is made of memristors. Int. J. Bifurcat. Chaos 22, 1230011 (2012). (48pp)CrossRefGoogle Scholar
  10. 10.
    Chua, L.: Resistance switching memories are memristors. Appl. Phys. A Mater. Sci. Process. 102, 765–782 (2011)CrossRefGoogle Scholar
  11. 11.
    Georgiou, P., Yaliraki, S., Drakakis, E., Barahona, M.: Quantitative measure of hysteresis for memristors through explicit dynamics. Proc. R. Soc. A 468, 2210–2229 (2012)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Gale, E., de Lacy Costello, B., Adamatzky, A.: Observation and characterization of memristor current spikes and their application to neuromorphic computation. AIP Conf. Proc. 1479, 1898 (2012)CrossRefGoogle Scholar
  13. 13.
    Gale, E., de Lacy Costello, B., Adamatzky, A.: Boolean logic gates from a single memristor via low-level sequential logic. In: Mauri, G., Dennunzio, A., Manzoni, L., Porreca, A.E. (eds.) UCNC 2013. LNCS, vol. 7956, pp. 79–89. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  14. 14.
    Gale, E., de Lacy Costello, B., Adamatzky, A.: Observations of bursting spike patterns in simple three memristor circuits. arXiv (2012) (preprint). http://arxiv.org/pdf/1210.8024v1.pdf
  15. 15.
    Gale, E., de Lacy Costello, B., Adamatzky, A.: Does the d.c. response of memristors allow robotic short-term memory and a possible route to artificial time perception? In: ICRA 2013 Workshop - Unconventional Approaches to Robotics, Automation and Control, Inspired by Nature (UARACIN) (2013)Google Scholar
  16. 16.
    Chua, L.O., Yang, L.: Cellular neural networks: theory. IEEE Trans. Circuits Syst. 35(10), 1257–1272 (1988)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Crounse, K.R., Chua, L.O.: Methods for image processing and pattern formation in cellular neural networks: a tutorial. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 42(10), 583–601 (1995)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Wolfram, S.: Theory and Applications of Cellular Automata. World Scientific, Singapore (1986)zbMATHGoogle Scholar
  19. 19.
    Adamatzky, A.: Computing in Non-linear Media and Automata Collectives. Institute of Physics Publishing, Bristol (2001)CrossRefGoogle Scholar
  20. 20.
    Georgilas, I., Adamatzky, A., Melhuish, C.: Towards an intelligent distributed conveyor. In: Herrmann, G., Studley, M., Pearson, M., Conn, A., Melhuish, C., Witkowski, M., Kim, J.-H., Vadakkepat, P. (eds.) TAROS-FIRA 2012. LNCS, vol. 7429, pp. 457–458. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  21. 21.
    Rosin, P.: Training cellular automata for image processing. IEEE Trans. Image Process. 15(7), 2076–2087 (2006)CrossRefGoogle Scholar
  22. 22.
    Adamatzky, A., Chua, L.: Memristive excitable cellular automata. Int. J. Bifurcat. Chaos 21(11), 3083–3102 (2012)CrossRefGoogle Scholar
  23. 23.
    Lim, C., Prodromakis, T.: Computing motion with 3d memristive grids. arXiv (2013) (preprint). http://arxiv.org/pdf/1303.3067v1.pdf
  24. 24.
    Golly http://golly.sourceforge.net/. Accessed 29 April 2013
  25. 25.
    Adamatzky, A., Melhuish, C.: Phototaxis of mobile excitable lattices. Chaos. Soliton. Fract. 13(1), 171–184 (2002)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Ioannis Georgilas
    • 1
    • 2
  • Ella Gale
    • 1
    • 2
  • Andrew Adamatzky
    • 1
    • 2
  • Chris Melhuish
    • 2
  1. 1.International Centre for Unconventional ComputingUniversity of the West of EnglandBristolUK
  2. 2.Bristol Robotics LaboratoryUniversity of Bristol and University of the West of EnglandBristolUK

Personalised recommendations