Overcoming Linguistic Barriers to the Multilingual Semantic Web

  • Graeme HirstEmail author


I analyze Berners-Lee, Hendler, and Lassila’s description of the Semantic Web, discussing what it implies for a Multilingual Semantic Web and the barriers that the nature of language itself puts in the way of that vision. Issues raised include the mismatch between natural language lexicons and hierarchical ontologies, the limitations of a purely writer-centered view of meaning, and the benefits of a reader-centered view. I then discuss how we can start to overcome these barriers by taking a different view of the problem and considering distributional models of semantics in place of purely symbolic models.

Key Words

Distributional semantics Near-synonymy Ontologies Reader-centered view of meaning Semantic Web Writer-centered view of meaning 



This work was supported financially by the Natural Sciences and Engineering Research Council of Canada. For helpful comments, I am grateful to Lars Borin, Philipp Cimiano, Nadia Talent, the anonymous reviewers, and the participants of the Dagstuhl Seminar on the Multilingual Semantic Web.


  1. Adamska-Sałaciak, A. (2013). Equivalence, synonymy, and sameness of meaning in a bilingual dictionary. International Journal of Lexicography, 26(3), 329–345. doi: 10.1093/ijl/ect016.CrossRefGoogle Scholar
  2. Baroni, M., Bernardi, R., & Zamparelli, R. (2014). Frege in space: A program for compositional distributional semantics. Linguistic Issues in Language Technology, 9(6) (February 2014).Google Scholar
  3. Berners-Lee, T. (2009). The next Web. In TED Conference, Long Beach, CA.
  4. Berners-Lee, T., Hendler, J., & Lassila, O. (2001, May). The Semantic Web. Scientific American, 284(5), 34–43.CrossRefGoogle Scholar
  5. Borin, L. (2012). Core vocabulary: A useful but mystical concept in some kinds of linguistics. In D. Santos, K. Lindén, & W. Ng’ang’a (Eds.), Shall we play the Festschrift game? (pp. 53–65). Berlin: Springer. doi: 10.1007/978-3-642-30773-7_6.
  6. Breslin, J. G., Passant, A., & Decker, S. (2009). The social Semantic Web. Berlin: Springer. doi: 10.1007/978-3-642-01172-6.CrossRefGoogle Scholar
  7. Cimiano, P., Buitelaar, P., McCrae, J., & Sintek, M. (2011). LexInfo: A declarative model for the lexicon–ontology interface. Journal of Web Semantics, 9(1), 29–51. doi: 10.1016/j.websem.2010.11.001.CrossRefGoogle Scholar
  8. Cimiano, P., Unger, C., & McCrae, J. (2014). Ontology-based interpretation of natural language. San Rafael: Morgan & Claypool Publishers.Google Scholar
  9. Clarke, D. (2012). A context-theoretic framework for compositionality in distributional semantics. Computational Linguistics, 38(1), 41–71. doi: 10.1162/COLI_a_00084.CrossRefGoogle Scholar
  10. Edmonds, P., & Hirst, G. (2002). Near-synonymy and lexical choice. Computational Linguistics, 28(2), 105–144. doi: 10.1162/089120102760173625.CrossRefGoogle Scholar
  11. Erk, K. (2012). Vector space models of word meaning and phrase meaning: A survey. Language and Linguistics Compass, 6(10), 635–653. doi: 10.1002/lnco.362.CrossRefGoogle Scholar
  12. Erk, K. (2013). Towards a semantics for distributional representations. In Proceedings, 10th International Conference on Computational Semantics (IWCS-2013), Potsdam.
  13. Farrell, R. B. (1977). German synonyms. Cambridge: Cambridge University Press.Google Scholar
  14. Fish, S. (1980). Is there a text in this class? The authority of interpretive communities. Cambridge: Harvard University Press.Google Scholar
  15. Freitas, A., O’Riain, S., & Curry, E. (2013). A distributional semantic search infrastructure for linked dataspaces. In The Semantic Web: ESWC 2013 Satellite Events. Lecture Notes in Computer Science (Vol. 7955, pp. 214–218). Berlin: Springer. doi: 10.1007/978-3-642-41242-4_27.Google Scholar
  16. Friedman, J., Moran, D. B., & Warren, D. S. (1978). Explicit finite intensional models for PTQ. American Journal of Computational Linguistics, microfiche 74, 3–22.
  17. Fujiwara, Y., Isogai, H., & Muroyama, T. (1985). Hyogen Ruigo Jiten. Tokyo: Tokyodo Publishing.Google Scholar
  18. Gracia, J., Montiel-Ponsoda, E., Cimiano, P., Gómez-Pérez, A., Buitelaar, P., & McCrae, J. (2012). Challenges for the multilingual Web of data. Journal of Web Semantics, 11, 63–71. doi: 10.1016/j.websem.2011.09.001 CrossRefGoogle Scholar
  19. Hirst, G. (2007). Views of text-meaning in computational linguistics: Past, present, and future. In G. Dodig Crnkovic & S. Stuart (Eds.), Computation, information, cognition — The Nexus and the Liminal (pp. 270–279). Newcastle: Cambridge Scholars Publishing.
  20. Hirst, G. (2008). The future of text-meaning in computational linguistics. In P. Sojka, A. Horák, I. Kopeček, & K. Pala (Eds.), Proceedings, 11th International Conference on Text, Speech and Dialogue (TSD 2008). Lecture Notes in Artificial Intelligence (Vol. 5246, pp. 1–9). Berlin: Springer. doi: 10.1007/978-3-540-87391-4_1.Google Scholar
  21. Hirst, G. (2009a). Ontology and the lexicon. In S. Staab & R. Studer (Eds.), Handbook on ontologies. International Handbooks on Information Systems (2nd ed., pp. 269–292). Berlin: Springer. doi: /10.1007/978-3-540-92673-3_12.
  22. Hirst, G. (2009b, July). Limitations of the philosophy of language understanding implicit in computational linguistics. Proceedings, 7th European Conference on Computing and Philosophy, Barcelona (pp. 108–109).
  23. Hirst, G. (2013). Computational linguistics. In K. Allan (Ed.), The Oxford handbook of the history of linguistics. Oxford: Oxford University Press.Google Scholar
  24. Hirst, G., & Mohammad, S. (2011). Semantic distance measures with distributional profiles of coarse-grained concepts. In A. Mehler, K. U. Kühnberger, H. Lobin, H. Lüngen, A. Storrer, & A. Witt (Eds.), Modeling, learning, and processing of text technological data structures. Studies in Computational Intelligence Series (Vol. 370, pp. 61–79). Berlin: Springer. doi: 10.1007/978-3-642-22613-7_4.
  25. Hirst, G., & Ryan, M. (1992). Mixed-depth representations for natural language text. In P. S. Jacobs (Ed.), Text-based intelligent systems (pp. 59–82). Hillsdale, NJ: Lawrence Erlbaum Associates.
  26. Hirst, G., Talent, N., & Scharf, S. (2013, 27 May). Detecting semantic overlap and discovering precedents in the biodiversity research literature. In Proceedings of the First International Workshop on Semantics for Biodiversity (S4BioDiv) (CEUR Workshop Proceedings, Vol. 979), 10th Extended Semantic Web Conference (ESWC-2013), Montpellier, France.
  27. Hjelmslev, L. (1961). Prolegomena to a theory of language (rev. ed.). (F. J. Whitfield, Trans.). Madison: University of Wisconsin Press. (Originally published as Omkring sprogteoriens grundlæggelse, 1943.)Google Scholar
  28. Inkpen, D., & Hirst, G. (2006). Building and using a lexical knowledge-base of near-synonym differences. Computational Linguistics, 32(2), 223–262.
  29. Kennedy, A., & Hirst, G. (2012, December). Measuring semantic relatedness across languages. In Proceedings, xLiTe: Cross-Lingual Technologies Workshop at the Neural Information Processing Systems Conference, Lake Tahoe, NV.
  30. McCrae, J., Aguado-de-Cea, G., Buitelaar, P., Cimiano, P. Declerck, T. Gómez-Pérez, A., et al. (2012). Interchanging lexical resources on the Semantic Web. Language Resources and Evaluation, 46(4), 701–719. doi: 10.1007/s10579-012-9182-3.CrossRefGoogle Scholar
  31. Mitchell, J., & Lapata, M. (2010). Composition in distributional models of semantics. Cognitive Science, 34(8), 1388–1429. doi: 10.1111/j.1551-6709.2010.01106.x.CrossRefGoogle Scholar
  32. Mohammad, S., Gurevych, I., Hirst, G., & Zesch, T. (2007). Cross-lingual distributional profiles of concepts for measuring semantic distance. In 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL 2007), Prague (pp. 571–580).
  33. Mohammad, S., & Hirst, G. (2006, July). Distributional measures of concept-distance: A task-oriented evaluation. In Proceedings, 2006 Conference on Empirical Methods in Natural Language Processing (EMNLP 2006), Sydney, Australia (pp. 35–43).
  34. Montague, R. (1974). Formal philosophy. New Haven: Yale University Press.Google Scholar
  35. Nováček, V., Handschuh, S., & Decker, S. (2011). Getting the meaning right: A complementary distributional layer for the web semantics. In Proceedings, 10th International Semantic Web Conference (ISWC-2011) (Vol. 1, pp. 504–519). Lecture Notes in Computer Science, Vol. 7031. Berlin: Springer. doi: 10.1007/978-3-642-25073-6_32.Google Scholar
  36. Reddy, M. J. (1979). The conduit metaphor: A case of frame conflict in our language about language. In A. Ortony (Ed.), Metaphor and thought (pp. 284–324). Oxford: Oxford University Press. [Reprinted unchanged in the second edition, 1993, pp. 164–201.]Google Scholar
  37. Schogt, H. G. (1976). Sémantique synchronique: synonymie, homonymie, polysémie. Toronto: University of Toronto Press.Google Scholar
  38. Schogt, H. G. (1988). Linguistics, literary analysis, and literary translation. Toronto: University of Toronto Press.Google Scholar
  39. Turney, P. D., & Pantel, P. (2010). From frequency to meaning: Vector space models of semantics. Journal of Artificial Intelligence Research, 37, 141–188. doi: 10.1613/jair.2934.zbMATHMathSciNetGoogle Scholar
  40. Wilks, Y. (2009). Ontotherapy, or how to stop worrying about what there is. In N. Nicolov, G. Angelova, & R. Mitkov (Eds.), Recent advances in natural language processing V (pp. 1–20). Amsterdam: John Benjamins.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of TorontoTorontoCanada

Personalised recommendations