Anwendungen des Resource-Constrained Project Scheduling Problem in der Produktionsplanung

Chapter

Zusammenfassung

Dieser Beitrag behandelt ein quantitatives Optimierungsmodell, das eine Problemstellung bei der kurzfristigen Produktionsplanung abbildet. Dieses Modell lässt sich bezugnehmend auf das hierarchische Produktionsplanungskonzept, das von Drexl et al. (1994) vorgestellt wurde, in die segmentspezifische Feinplanung einordnen. Der Detaillierungsgrad der Planung ist hier sehr hoch. Es werden einzelne Ressourceneinheiten wie z. B. Mitarbeiter mit verschiedenen Qualifikationen, Maschinen mit unterschiedlichen technischen Spezifikationen (Verarbeitungsgeschwindigkeit, Eignung für die Durchführung bestimmter Vorgänge), Werkzeuge und Material abgebildet. Die zu planenden Vorgänge sind i. d. R. atomar, d. h., sie sind nicht weiter in sinnvolle kleinere Schritte zu unterteilen. Der Planungshorizont ist entsprechend kurz und beträgt häufig wenige Tage.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturverzeichnis

  1. Al-Fawzan, M., und M. Haouari (2005). A bi-objective model for robust resource-constrained project scheduling. International Journal 0/ Production Economics 96, 175–187.CrossRefGoogle Scholar
  2. Ballestln, F. (2007). When it is worthwhile to work with the stochastic RCPSP? Journal 0/ Scheduling 3(3), 153–166.CrossRefGoogle Scholar
  3. Ballestln, F., V. Valls und S. Quintanilla (2006). Due dates and RCPSP. See J6zefowska und W~glarz (2006), S. 131–163.Google Scholar
  4. Bartusch, M., R. H. Möhring und F. J. Radermacher (1988). Scheduling project networks with resource constraints and time windows. Annals 0/ Operations Research 16,201–240.Google Scholar
  5. Bianco, L., und M. Caramia (2013). A new formulation for the project scheduling problem nnder limited resources. Flexible Services and Manufacruring Journal 25, 6–24.CrossRefGoogle Scholar
  6. Blazewicz, J., J. K. Lenstra und A. H. G. Rinnooy Kan (1983). Scheduling subject to resource constraints: Classification and complexity. Discrete Applied Mathematics 5, 11–24.CrossRefGoogle Scholar
  7. Böttcher, J., A. Drexl, R. Kolisch und F. Salewski (1999). Project scheduling under partially renewable resource constraints. Management Science 45, 543–559.CrossRefGoogle Scholar
  8. Calhoun, K. M., R. F. Deckro, J. T. Moore, J. W. Chrissis und J. C. V. Hove (2002). Planning and re-planning in project and production scheduling. Omega – The international Journal 01 Management Seience 30(3), 15 & -170.Google Scholar
  9. Chtourou, H., und M. Haouari (2008). A two-stage-priority-rule-based a\gorithm for robust resource-constrained project scheduling. Computers & Industrial Engineering 55 ( 1 ) , 183–194.CrossRefGoogle Scholar
  10. de Reyck, B., und W. S. Herroelen (1999). The multi-mode resource-constrained project scheduling problem with generalized precedence relations. European Journal 01 Opera tional Research 119(2), 531-556.Google Scholar
  11. Debels, D., B. D. Reyck, R. Leus und M. Vanhoucke (2006). A hybrid scatter search/ electromagnetism meta-heuristic far project scheduling. European Journal 0/ Operational Research 169(2), 638–653.Google Scholar
  12. Demeulemeester, E. L., und W. S. Herroelen (1992). A branch-and-bound procedure for the multiple resource-constrained project scheduling problem. Management Science 38 , 1803–1818.CrossRefGoogle Scholar
  13. Demeulemeester, E. L., und W. S. Herroelen (1997). A branch-and-bound procedure for the generalized resource-constrained project scheduling problem. Operations Research 45 , 201–212.CrossRefGoogle Scholar
  14. Drexl, A., B. Fleischmann, H.-O. Günther, H. Stadtler und H. Tempelmeier (1994). Konzeptionelle Grundlagen kapazitätsorientierter PPS-Systeme. Zeitschrift für betriebswirtschaftliche Forschung 46, 1022–1045.Google Scholar
  15. Drexl, A., und A. Kimms (2001). Optimization guided lower and upper bounds for the resource investment problem. Journal 0/ the Operational Research Society 52, 340–351.CrossRefGoogle Scholar
  16. Drexl, A., R. Kolisch und A. Sprecher (1997). Neuere Entwicklungen in der Projektplanung. Zeitschrift für betriebswirtschaftliehe Forschung 49, 9 & -120.Google Scholar
  17. Ehnaghraby, S. E. (1977). Activity networks: Project planning and contral by network modets. Wiley, New York.Google Scholar
  18. Gonca1ves, J., M. Resende und J. Mendes (2011). A biased random-key genetic algorithm with forward-back.ward improvement for the resource constrained project scheduling problem. Journal 01 He",·istics 17, 467–486.Google Scholar
  19. Hartmann, S. (1998). A competitive genetic a\gorithm for resource-constrained project seheduling. Naval Research Logistics 45, 733–750.CrossRefGoogle Scholar
  20. Hartmann, S. (2001). Project scheduling with multiple modes: A genetic algorithm. Annats 01 Operations Research 1012, 111–135.Google Scholar
  21. Hartmann, S. (2002). A self-adapting genetic algorithm for project scheduling under resource constraints. Naval Research Logistics 49, 433–448.CrossRefGoogle Scholar
  22. Hartmann, S. (2013). Project scheduling with resource capacities and requests vaxying with time: A case study. Flexible Services and Manu/acturing Journal 25, 74–93.CrossRefGoogle Scholar
  23. Hartmann, S. (2014). Time-Varying Resource Requirements and Capacities. In: C. Schwindt und J. Zimmermann (Hrsg.), Handbook o/project management and 8cheduling. Springer, Berlin, Germany. To appear.Google Scholar
  24. Hartmann, S., und D. Briskorn (2010). A survey of variants and extensions of the resourceconstrained project scheduling problem. European Journal 0/ Opemtional Research 207 , 1–14.Google Scholar
  25. Hartmann, S., und A. Drexl (1998). Project scheduling with multiple modes: A comparison of exact algorithms. Networks 312, 283–297.CrossRefGoogle Scholar
  26. Hartmann, S., und R. Kolisch (2000). Experimental evaluation of state-of-the-art heuristics for the resource-constrained project scheduling problem. European Journal olOperational Research 127, 394–407.Google Scholar
  27. Heilmann, R. (2001). Resource-conBtrained project scheduling: a heuristic for the multimode case. OR Spektrum 23, 33 & -357.Google Scholar
  28. Heilmann, R. (2003). A branch-and-bound procedure for the multi-mode resourceconstrained project scheduling problem with minimum and maximum time lags. Eu ropean Journal 0/ Operational Research 144, 34B –365.Google Scholar
  29. Heimerl, C., und R. Kolisch (2010). Scheduling and stafling multiple projects with a multiskilled workforce. OR Spektrum 32, 343–368.CrossRefGoogle Scholar
  30. J6zefowska, J., und J. W~glarz (Hrsg.) (2006). Perspectives in Modern Project Scheduling. Springer, Berlin, Germany.Google Scholar
  31. Kimms, A. (2001). Maximizing the net present value of a project under resource constraints using a lagrangian relaxation based heuristic with tight upper bounds. Annals 01 Operntions Research 3(1–4), 221–236.Google Scholar
  32. Kobylanski, P., und D. Kuchta (2007). A note on the paper by M.A. AI-Fawzan and M. Haouari about a bi-objective problem for robust resource-constrained project scheduling. International Journal 0/ Production Economics 107, 496–501 . Google Scholar
  33. Kolisch, R. (1996a). Efficient priority rules for the resource-constrained project scheduling problem. Journal 0/ Operations Management 14, 179–192.Google Scholar
  34. Kolisch, R. (1996b). Serial and parallel resource-constrained project scheduling methods revisited: Theory and computation. European Journal 01 Operational Research 90 , 320-333.Google Scholar
  35. Kolisch, R., und S. Hartmann (1999). Heuristic algorithms for solving the resourceconstrained project scheduling problem: Classification and computational analysis. In: J. W~glarz (Hrsg.), Project scheduling: Recent models, algorithms and applications. Kluwer Academic Publishers. S. 147–178.Google Scholar
  36. Kolisch, R., und S. Hartmann (2006). Experimental investigation of heuristics for resourceconstrained project scheduling: An update. European Journal 01 Operational Rese arch 174, 23–37.Google Scholar
  37. Kolisch, R., und K. Meyer (2006). Selection and scheduling of pharmaceutical research projects. In: J. Jozefowska und J. Weglarz (Hrsg.), Perspectives in Modern Project Scheduling . Springer, Berlin, Gennany. S. 321–344.Google Scholar
  38. KomI, 0., C. Artigues, P. Lopez und M. Mongeau (2012). Comparison of mixed integer linear programming models for the resource-constrained project scheduling problem with consumption and production of resources. Flexible Services and Manulacturing Journal . Forthcoming.Google Scholar
  39. Lambrechts, 0., E. Demeulemeester und W. Herroelen (2011). Time slack-based techniques for robust project scheduling subject to resource uncertainty. Annals 01 Operations Research 186, 443–464.Google Scholar
  40. Liess, 0., und P. Michelon (2008). A constraint programming approach for the resourceconstrained project scheduling problem. Annals olOpemtions Research 157, 25–36.Google Scholar
  41. Mika, M., G. Walig6ra und J. Weglarz (2008). Tabu search for multi-mode resourceconstrained project scheduling with schedule-dependent setup times. European Journal 0/ Operational Research 187(3), 123B –1250.Google Scholar
  42. Mingozzi, A., V. Maniezzo, S. Ricciardelli und L. Bianco (1998). An exact algorithm for the resource-constrained project scheduling problem based on a new mathematical formulation. Management Science 44, 714–729.Google Scholar
  43. Möhring, R. H., A. S. Schulz, F. Stork und M. Uetz (2003). Solving project scheduling problems by minimum cut computations. Management Science 49, 330–350.CrossRefGoogle Scholar
  44. Neumann, K., und C. Schwindt (2002). Project scheduling with inventory constraints. Mathematical Methods 0/ Operations Research 56, 513–533.CrossRefGoogle Scholar
  45. Neumann, K., C. Sehwindt und J. Zimmermann (2006). Resource-constrained project seheduling with time windows: Recent developments and new applications. See J6zefowska und W~glarz (2006), S. 375–407.Google Scholar
  46. Petegliem, V. V., und M. Vanhoucke (2010). A genetic algorithm for the preemptive and non-preemptive multi-morle resource-constrained project scheduling problem. European Journal 0/ Opemtional Research 201 (2), 409–418.CrossRefGoogle Scholar
  47. Polieella, N., A. Oddi, S. F. Smith und A. Cesta (2004). Generating robust partial order sehedules. In: GP04: Proceedings 0/ the Tenth International Gon/erence on the Principles and Pmctice 0/ Gonstmint Progmmming. Springer. S. 496–511.Google Scholar
  48. Pritsker, A. A. B., L. J. Watters und P. M. Wolfe (1969). Multiproject seheduling with limited resources: A zero-one programming approach. Management Science 16, 93–107.CrossRefGoogle Scholar
  49. Sakkout, H., und M. Wallace (2000). Probe backtrack seareh for minimal perturbation in dynarnic seheduling. Gonstmints 5(4),359–388.Google Scholar
  50. Salewski, F., A. Sehirmer und A. Drexl (1997). Project scheduling under resouree and mode identity constraints: Model, complexity, methods, and application. European Journal of Opemtional Research 102, 88–110.CrossRefGoogle Scholar
  51. Sprecher, A. (2000). Seheduling resource-constralned projects competetively at modest memory requirements. Management Science 46, 710–723.Google Scholar
  52. Sprecher, A., und A. Drexl (1998). Multi-mode resource-constralned project scheduling by a simple, general and powerful sequencing algorithm. European Journal 0/ Operational Research 107, 431–450.CrossRefGoogle Scholar
  53. Sprecher, A., R. Kolisch und A. Drexl (1995). Semi-active, active and non-delay sehedules for the resource-constrained project scheduling problem. European Journal 0/ Operational Research 80, 94–102.CrossRefGoogle Scholar
  54. Talbot, F. B. (1982). Resource-constrained project scheduling with time-resource tradeo:ffs: The nonpreemptive case. Management Science 28, 1197–1210.CrossRefGoogle Scholar
  55. Tormos, P., und A. Lava (2001). A competitive heuristic solution technique for resourceconstrained project seheduling. Annals 0/ Operntions Research 102, 65-ll1.Google Scholar
  56. Valls, V., F. Ballestin und M. S. Quintanilla (2005). Justification and RCPSP: A technique that pays. European Journal 0/ Opemtional Research 165, 375–386.Google Scholar
  57. Valls, V., F. Ballestin und S. Quintanilla (2008). A hybrid genetic algorithm for the resource-constrained project scheduling problem. European Journal oi Operational Re search 185(2), 495–508.CrossRefGoogle Scholar
  58. Valls, V., M. S. Quintanilla und F. Ballestin (2003). Resource-constralned project scheduling: A critical activity reordering lieuristic. European Journal 0/ Opemtional Research 149, 282–301.CrossRefGoogle Scholar
  59. Van de Vonder, S., E. Demeulemeester und W. Herroelen (2008). Proaclive heuristic procedures for robust project scheduling: An experimental analysis. European Journal oi Opemtional Research 189(3), 723–733.Google Scholar
  60. Van de Vonder, S., E. L. Demeulemeester und W. S. Herroelen (2007). A classilication of predictive-reactive project scheduling procedures. Journal 0/ Scheduling 3(3), 195–207.CrossRefGoogle Scholar
  61. Vanhoucke, M., E. L. Demeulemeester und W. S. Herroelen (2001). Maximizing the net present value of a project with linear time-dependent cash flows. International Journal 0/ Production Research 39, 3159–3181.Google Scholar
  62. Varma, V. A., R. Uzsoy, J. Pekny und G. Blau (2007). Lagrangian heuristics for seheduling new product development projects in the pharmaceutical industry. Journal oi Heu";stics 13(5), 403–433.Google Scholar
  63. Weglarz, J., J. Jozefowska, M. Mika und G. Waligora (2011). Project seheduling with finite or infinite number of activity processing modes – A survey. European Journal oi Operational Research 208, 177–205.;CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Lehrstuhl für Produktion und Logistik,Fachbereich Wirtschaftswissenschaft (Schumpeter School of Business and Economics)BergischeUniversität WuppertalWuppertalDeutschland

Personalised recommendations