Fundamental Collective Behaviors in Swarm Robotics


In this chapter, we present and discuss a number of types of fundamental collective behaviors studied within the swarm robotics domain. Swarm robotics is a particular approach to the design and study of multi-robot systems, which emphasizes decentralized and self-organizing behavior that deals with limited individual abilities, local sensing, and local communication. The desired features for a swarm robotics system are flexibility to variable environmental conditions, robustness to failure, and scalability to large groups. These can be achieved thanks to well-designed collective behavior – often obtained via some sort of bio-inspired approach – that relies on cooperation among redundant components. In this chapter, we discuss the solutions proposed for a limited number of problems common to many swarm robotics systems – namely aggregation, synchronization, coordinated motion, collective exploration, and decision making. We believe that many real-word applications subsume one or more of these problems, and tailored solutions can be developed starting from the studies we review in this chapter. Finally, we propose possible directions for future research and discuss the relevant challenges to be addressed in order to push forward the study and the applications of swarm robotics systems.


Central Place Collective Decision Aggregation Behavior Nest Site Selection Amplification Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

virtual heading system


  1. [71.1]
    J.T. Bonner: Chemical signals of social amoebae, Sci. Am. 248, 114–120 (1983)CrossRefGoogle Scholar
  2. [71.2]
    C. van Oss, A.V. Panfilov, P. Hogeweg, F. Siegert, C.J. Weijer: Spatial pattern formation during aggregation of the slime mould Dictyostelium discoideum, J. Theor. Biol. 181(3), 203–213 (1996)CrossRefGoogle Scholar
  3. [71.3]
    S. Camazine, J.-L. Deneubourg, N. Franks, J. Sneyd, G. Theraulaz, E. Bonabeau: Self-Organization in Biological Systems (Princeton Univ. Press, Princeton 2001)MATHGoogle Scholar
  4. [71.4]
    J.-L. Deneubourg, J.C. Grégoire, E. Le Fort: Kinetics of larval gregarious behavior in the bark beetle Dendroctonus micans (coleoptera, scolytidae), J. Insect Behav. 3(2), 169–182 (1990)CrossRefGoogle Scholar
  5. [71.5]
    R. Jeanson, C. Rivault, J.-L. Deneubourg, S. Blanco, R. Fournier, C. Jost, G. Theraulaz: Self-organized aggregation in cockroaches, Anim. Behav. 69(1), 169–180 (2005)CrossRefGoogle Scholar
  6. [71.6]
    S. Garnier, C. Jost, J. Gautrais, M. Asadpour, G. Caprari, R. Jeanson, A. Grimal, G. Theraulaz: The embodiment of cockroach aggregation behavior in a group of micro-robots, Artif. Life 14(4), 387–408 (2008)CrossRefGoogle Scholar
  7. [71.7]
    G. Caprari, R. Siegwart: Mobile micro-robots ready to use: Alice, Proc. 2005 IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS 2005), Piscataway (2005) pp. 3295–3300CrossRefGoogle Scholar
  8. [71.8]
    M. Dorigo, V. Trianni, E. Şahin, R. Groß, T.H. Labella, G. Baldassarre, S. Nolfi, J.-L. Deneubourg, F. Mondada, D. Floreano, L.M. Gambardella: Evolving self-organizing behaviors for a swarm-bot, Auton. Robot. 17(2/3), 223–245 (2004)CrossRefGoogle Scholar
  9. [71.9]
    S. Kernbach, R. Thenius, O. Kernbach, T. Schmickl: Re-embodiment of honeybee aggregation behavior in an artificial micro-robotic system, Adapt. Behav. 17(3), 237–259 (2009)CrossRefGoogle Scholar
  10. [71.10]
    O. Soysal, E. Şahin: A macroscopic model for self-organized aggregation in swarm robotic systems, Lect. Notes Comput. Sci. 4433, 27–42 (2007)CrossRefGoogle Scholar
  11. [71.11]
    E. Bahçeci, E. Şahin: Evolving aggregation behaviors for swarm robotic systems: A systematic case study, Proc. IEEE Swarm Intell. Symp. (SIS 2005), Piscataway (2005) pp. 333–340Google Scholar
  12. [71.12]
    H. Ando, Y. Oasa, I. Suzuki, M. Yamashita: Distributed memoryless point convergence algorithm for mobile robots with limited visibility, IEEE Trans. Robot. Autom. 15(5), 818–828 (1999)CrossRefGoogle Scholar
  13. [71.13]
    V. Gazi: Swarm aggregations using artificial potentials and sliding-mode control, IEEE Trans. Robot. 21(6), 1208–1214 (2005)CrossRefGoogle Scholar
  14. [71.14]
    W.M. Spears, D.F. Spears, J.C. Hamann, R. Heil: Distributed, physics-based control of swarms of vehicles, Auton. Robot. 17(2), 137–162 (2004)CrossRefGoogle Scholar
  15. [71.15]
    C. Melhuish, O. Holland, S. Hoddell: Convoying: Using chorusing to form travelling groups of minimal agents, Robot. Auton. Syst. 28, 207–216 (1999)CrossRefGoogle Scholar
  16. [71.16]
    A. Pikovsky, M. Rosenblum, J. Kurths: Phase synchronization in regular and chaotic systems, Int. J. Bifurc. Chaos 10(10), 2291–2305 (2000)MathSciNetCrossRefMATHGoogle Scholar
  17. [71.17]
    S.H. Strogatz: Sync: The Emerging Science of Spontaneous Order (Hyperion, New York 2003)Google Scholar
  18. [71.18]
    A.T. Winfree: Biological rhythms and the behavior of populations of coupled oscillators, J. Theor. Biol. 16(1), 15–42 (1967)CrossRefGoogle Scholar
  19. [71.19]
    Y. Kuramoto: Phase dynamics of weakly unstable periodic structures, Prog. Theor. Phys. 71(6), 1182–1196 (1984)MathSciNetCrossRefMATHGoogle Scholar
  20. [71.20]
    J. Buck: Synchronous rhythmic flashing of fireflies. II, Q. Rev. Biol. 63(3), 256–289 (1988)MathSciNetCrossRefGoogle Scholar
  21. [71.21]
    R.E. Mirollo, S.H. Strogatz: Synchronization of pulse-coupled biological oscillators, SIAM J. Appl. Math. 50(6), 1645–1662 (1990)MathSciNetCrossRefMATHGoogle Scholar
  22. [71.22]
    S. Wischmann, M. Huelse, J.F. Knabe, F. Pasemann: Synchronization of internal neural rhythms in multi-robotic systems, Adapt. Behav. 14(2), 117–127 (2006)CrossRefGoogle Scholar
  23. [71.23]
    V. Trianni, S. Nolfi: Self-organising sync in a robotic swarm. A dynamical system view, IEEE Trans. Evol. Comput. 13(4), 722–741 (2009)CrossRefGoogle Scholar
  24. [71.24]
    M. Hartbauer, H. Roemer: A novel distributed swarm control strategy based on coupled signal oscillators, Bioinspiration Biomim. 2(3), 42–56 (2007)CrossRefGoogle Scholar
  25. [71.25]
    A.L. Christensen, R. O'Grady, M. Dorigo: From fireflies to fault-tolerant swarms of robots, IEEE Trans. Evol. Comput. 13(4), 754–766 (2009)CrossRefGoogle Scholar
  26. [71.26]
    S. Wischmann, F. Pasemann: The emergence of communication by evolving dynamical systems, Lect. Notes Artif. Intell. 4095, 777–788 (2006)Google Scholar
  27. [71.27]
    V. Sperati, V. Trianni, S. Nolfi: Evolving coordinated group behaviours through maximization of mean mutual information, Swarm Intell. 2(2–4), 73–95 (2008)CrossRefGoogle Scholar
  28. [71.28]
    A. Huth, C. Wissel: The simulation of the movement of fish schools, J. Theor. Biol. 156(3), 365–385 (1992)CrossRefGoogle Scholar
  29. [71.29]
    I. Aoki: A simulation study on the schooling mechanism in fish, Bull. Jpn. Soc. Sci. Fish. 48(8), 1081–1088 (1982)CrossRefGoogle Scholar
  30. [71.30]
    A. Okubo: Dynamical aspects of animal grouping: Swarms, schools, flocks, and herds, Adv. Biophys. 22, 1–94 (1986)CrossRefGoogle Scholar
  31. [71.31]
    I.D. Couzin, J. Krause, R. James, G.D. Ruxton, N.R. Franks: Collective memory and spatial sorting in animal groups, J. Theor. Biol. 218(1), 1–11 (2002)MathSciNetCrossRefGoogle Scholar
  32. [71.32]
    M. Ballerini, N. Calbibbo, R. Candeleir, A. Cavagna, E. Cisbani, I. Giardina, V. Lecomte, A. Orlandi, G. Parisi, A. Procaccini, M. Viale, V. Zdravkovic: Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study, Proc. Natl. Acad. Sci. USA 105(4), 1232–1237 (2008)CrossRefGoogle Scholar
  33. [71.33]
    I.D. Couzin, J. Krause, N.R. Franks, S.A. Levin: Effective leadership and decision-making in animal groups on the move, Nature 433(7025), 513–516 (2005)CrossRefGoogle Scholar
  34. [71.34]
    C.W. Reynolds: Flocks, herds, and schools: A distributed behavioral model, Comput. Graph. 21(4), 25–34 (1987)CrossRefGoogle Scholar
  35. [71.35]
    A.E. Turgut, H. Çelikkanat, F. Gökçe, E. Şahin: Self-organized flocking in mobile robot swarms, Swarm Intell. 2(2–4), 97–120 (2008)CrossRefGoogle Scholar
  36. [71.36]
    H. Çelikkanat, E. Şahin: Steering self-organized robot flocks through externally guided individuals, Neural Comput. Appl. 19(6), 849–865 (2010)CrossRefGoogle Scholar
  37. [71.37]
    A. Campo, S. Nouyan, M. Birattari, R. Groß, M. Dorigo: Negotiation of goal direction for cooperative transport, Lect. Notes Comput. Sci. 4150, 191–202 (2006)CrossRefGoogle Scholar
  38. [71.38]
    G. Baldassarre, V. Trianni, M. Bonani, F. Mondada, M. Dorigo, S. Nolfi: Self-organised coordinated motion in groups of physically connected robots, IEEE Trans. Syst. Man Cybern. B 37(1), 224–239 (2007)CrossRefGoogle Scholar
  39. [71.39]
    V. Trianni, M. Dorigo: Self-organisation and communication in groups of simulated and physical robots, Biol. Cybern. 95, 213–231 (2006)CrossRefMATHGoogle Scholar
  40. [71.40]
    D.H. Wolpert, W.G. Macready: No free lunch theorems for search. Technical Report SFI-TR-95-02-010 (Santa Fe Institute 1995)Google Scholar
  41. [71.41]
    T.J. Pitcher, A.E. Magurran, I.J. Winfield: Fish in larger shoals find food faster, Behav. Ecol. Sociobiol. 10(2), 149–151 (1982)CrossRefGoogle Scholar
  42. [71.42]
    T.J. Pitcher, J.K. Parrish: Functions of shoaling behaviour in teleosts, Behav. Teleost Fishes 2, 369–439 (1993)Google Scholar
  43. [71.43]
    D.J. Hoare, I.D. Couzin, J.-G.J. Godin, J. Krause: Context-dependent group size choice in fish, Anim. Behav. 67(1), 155–164 (2004)CrossRefGoogle Scholar
  44. [71.44]
    E.A. Codling, M.J. Plank, S. Benhamou: Random walk models in biology, J. R. Soc. Interface 5(25), 813–834 (2008)CrossRefGoogle Scholar
  45. [71.45]
    P. Turchin: Quantitative Analysis of Movement: Measuring and Modeling Population Redistribution in Animals and Plants (Sinauer Associates Sunderland, Massachusetts 1998)Google Scholar
  46. [71.46]
    A. Ōkubo, S.A. Levin: Diffusion and Ecological Problems: Modern Perspectives, Vol. 14 (Springer, Berlin, Heidelberg 2001)MATHGoogle Scholar
  47. [71.47]
    S. Benhamou: Spatial memory and searching efficiency, Animal Behav. 47(6), 1423–1433 (1994)CrossRefGoogle Scholar
  48. [71.48]
    J.-L. Deneubourg, S. Goss, N. Franks, A. Sendova-Franks, C. Detrain, L. Chrétien: The dynamics of collective sorting robot-like ants and ant-like robots, Proc. 1st Int. Conf. Simul. Adapt. Behav. Anim. Animat. (1991) pp. 356–363Google Scholar
  49. [71.49]
    T. Schmickl, K. Crailsheim: Trophallaxis within a robotic swarm: Bio-inspired communication among robots in a swarm, Auton. Robot. 25(1), 171–188 (2008)CrossRefGoogle Scholar
  50. [71.50]
    Á. Gutiérrez, A. Campo, F. Santos, F. Monasterio-Huelin Maciá, M. Dorigo: Social odometry: Imitation based odometry in collective robotics, Int. J. Adv. Robot. Syst. 6(2), 129–136 (2009)Google Scholar
  51. [71.51]
    W. Burgard, M. Moors, D. Fox, R. Simmons, S. Thrun: Collaborative multi-robot exploration, Proc. IEEE Int. Conf. Robot. Autom. (ICRA '00), San Francisco (2000) pp. 476–481Google Scholar
  52. [71.52]
    D. Payton, M. Daily, R. Estowski, M. Howard, C. Lee: Pheromone robotics, Auton. Robot. 11(3), 319–324 (2001)CrossRefMATHGoogle Scholar
  53. [71.53]
    D. Payton, R. Estkowski, M. Howard: Progress in pheromone robotics. In: Intelligent Autonomous Systems 7, ed. by M. Gini, W.-M. Shen, C. Torras, H. Yuasa (IOS, Amsterdam 2002) pp. 256–264Google Scholar
  54. [71.54]
    A. Howard, M.J. Matarić, G.S. Sukhatme: An incremental self-deployment algorithm for mobile sensor networks, Auton. Robot. 13(2), 113–126 (2002)CrossRefMATHGoogle Scholar
  55. [71.55]
    M. Batalin, G. Sukhatme: Spreading out: A local approach to multi-robot coverage. In: Distributed Autonomous Robotic Systems 5, ed. by H. Asama, T. Arai, T. Fukuda, T. Hasegawa (Springer, Berlin, Heidelberg 2002) pp. 373–382CrossRefGoogle Scholar
  56. [71.56]
    B.B. Werger, M.J. Matarić: Robotic food chains: Externalization of state and program for minimal-agent foraging, Proc. 4th Int. Conf. Simul. Adapt. Behav. Anim. Animat., ed. by P. Maes, M.J. Matarić, J. Meyer, J. Pollack, S. Wilson (MIT, Cambridge 1996) pp. 625–634Google Scholar
  57. [71.57]
    S. Nouyan, R. Groß, M. Bonani, F. Mondada, M. Dorigo: Teamwork in self-organized robot colonies, IEEE Trans. Evol. Comput. 13(4), 695–711 (2009)CrossRefGoogle Scholar
  58. [71.58]
    L. Chittka, P. Skorupski, N.E. Raine: Speed–accuracy tradeoffs in animal decision making, Trends Ecol. Evol. 24(7), 400–407 (2009)CrossRefGoogle Scholar
  59. [71.59]
    N.R. Franks, A. Dornhaus, J.P. Fitzsimmons, M. Stevens: Speed versus accuracy in collective decision making, Proc. R. Soc. B 270(1532), 2457–2463 (2003)CrossRefGoogle Scholar
  60. [71.60]
    J.A.R. Marshall, A. Dornhaus, N.R. Franks, T. Kovacs: Noise, cost and speed-accuracy trade-offs: Decision-making in a decentralized system, J. R. Soc. Interface 3(7), 243–254 (2006)CrossRefGoogle Scholar
  61. [71.61]
    A. Gutiérrez, A. Campo, F.C. Santos, F. Monasterio-Huelin, M. Dorigo: Social odometry: Imitation based odometry in collective robotics, Int. J. Adv. Robot. Syst. 6(2), 1–8 (2009)Google Scholar
  62. [71.62]
    F. Galton: Vox populi, Nature 75, 450–451 (1907)CrossRefMATHGoogle Scholar
  63. [71.63]
    A.M. Simons: Many wrongs: The advantage of group navigation, Trends Ecol. Evol. 19(9), 453–455 (2004)CrossRefGoogle Scholar
  64. [71.64]
    E.A. Codling, J.W. Pitchford, S.D. Simpson: Group navigation and the many-wrongs principle in models of animal movement, Ecology 88(7), 1864–1870 (2007)CrossRefGoogle Scholar
  65. [71.65]
    J.-L. Deneubourg, S. Goss: Collective patterns and decision-making, Ethol. Ecol. Evol. 1, 295–311 (1989)CrossRefGoogle Scholar
  66. [71.66]
    R. Beckers, J.-L. Deneubourg, S. Goss, J.M. Pasteels: Collective decision making through food recruitment, Insectes Soc. 37(3), 258–267 (1990)CrossRefGoogle Scholar
  67. [71.67]
    T.D. Seeley, S. Camazine, J. Sneyd: Collective decision-making in honey bees: How colonies choose among nectar sources, Behav. Ecol. Sociobiol. 28(4), 277–290 (1991)CrossRefGoogle Scholar
  68. [71.68]
    T.D. Seeley, S.C. Buhrman: Nest-site selection in honey bees: How well do swarms implement the best-of-N decision rule?, Behav. Ecol. Sociobiol. 49(5), 416–427 (2001)CrossRefGoogle Scholar
  69. [71.69]
    F. Saffre, R. Furey, B. Krafft, J.-L. Deneubourg: Collective decision-making in social spiders: Dragline-mediated amplification process acts as a recruitment mechanism, J. Theor. Biol. 198(4), 507–517 (1999)CrossRefGoogle Scholar
  70. [71.70]
    J.M. Amé, J. Halloy, C. Rivault, C. Detrain, J.-L. Deneubourg: Collegial decision making based on social amplification leads to optimal group formation, Proc. Natl. Acad. Sci. USA 103(15), 5835–5840 (2006)CrossRefGoogle Scholar
  71. [71.71]
    O. Petit, J. Gautrais, J.B. Leca, G. Theraulaz, J.-L. Deneubourg: Collective decision-making in white-faced capuchin monkeys, Proc. R. Soc. B 276(1672), 3495 (2009)CrossRefGoogle Scholar
  72. [71.72]
    P. Michelena, R. Jeanson, J.-L. Deneubourg, A.M. Sibbald: Personality and collective decision-making in foraging herbivores, Proc. R. Soc. B 277(1684), 1093 (2010)CrossRefGoogle Scholar
  73. [71.73]
    S. Goss, S. Aron, J.-L. Deneubourg, J.M. Pasteels: Self-organized shortcuts in the Argentine ant, Naturwissenschaften 76(12), 579–581 (1989)CrossRefGoogle Scholar
  74. [71.74]
    D.J.T. Sumpter, J. Krause, R. James, I.D. Couzin, A.J.W. Ward: Consensus decision making by fish, Curr. Biol. 18(22), 1773–1777 (2008)CrossRefGoogle Scholar
  75. [71.75]
    A.J.W. Ward, D.J.T. Sumpter, I.D. Couzin, P.J.B. Hart, J. Krause: Quorum decision-making facilitates information transfer in fish shoals, Proc. Natl. Acad. Sci. USA 105(19), 6948 (2008)CrossRefGoogle Scholar
  76. [71.76]
    S.C. Pratt, E.B. Mallon, D.J. Sumpter, N.R. Franks: Quorum sensing, recruitment, and collective decision-making during colony emigration by the ant Leptothorax albipennis, Behav. Ecol. Sociobiol. 52(2), 117–127 (2002)CrossRefGoogle Scholar
  77. [71.77]
    D.J.T. Sumpter, S.C. Pratt: Quorum responses and consensus decision making, Philos. Trans. R. Soc. B 364(1518), 743–753 (2009)CrossRefGoogle Scholar
  78. [71.78]
    S. Canonge, J.-L. Deneubourg, S. Sempo: Group living enhances individual resources discrimination: The use of public information by cockroaches to assess shelter quality, PLoS ONE 6(6), e19748 (2011)CrossRefGoogle Scholar
  79. [71.79]
    T.D. Seeley, P.K. Visscher, T. Schlegel, P.M. Hogan, N.R. Franks, J.A.R. Marshall: Stop signals provide cross inhibition in collective decision-making by honeybee swarms, Science 335(6064), 108–111 (2012)CrossRefGoogle Scholar
  80. [71.80]
    S. Garnier, J. Gautrais, M. Asadpour, C. Jost, G. Theraulaz: Self-organized aggregation triggers collective decision making in a group of cockroach-like robots, Adapt. Behav. 17(2), 109–133 (2009)CrossRefGoogle Scholar
  81. [71.81]
    J. Halloy, G. Sempo, G. Caprari, C. Rivault, M. Asadpour, F. Tâche, I. Said, V. Durier, S. Canonge, J.M. Amé, C. Detrain, N. Correll, A. Martinoli, F. Mondada, R. Siegwart, J.L. Deneubourg: Social integration of robots into groups of cockroaches to control self-organized choices, Science 318(5853), 1155 (2007)CrossRefGoogle Scholar
  82. [71.82]
    R. Olfati-Saber, R.M. Murray: Consensus problems in networks of agents with switching topology and time-delays, IEEE Trans. Autom. Control 49(9), 1520–1533 (2004)MathSciNetCrossRefGoogle Scholar
  83. [71.83]
    R. Olfati-Saber, J.A. Fax, R.M. Murray: Consensus and cooperation in networked multi-agent systems, Proc. IEEE 95(1), 215–233 (2007)CrossRefGoogle Scholar
  84. [71.84]
    T. Schmickl, R. Thenius, C. Moeslinger, G. Radspieler, S. Kernbach, M. Szymanski, K. Crailsheim: Get in touch: Cooperative decision making based on robot-to-robot collisions, Auton. Agents Multi-Agent Syst. 18(1), 133–155 (2009)CrossRefGoogle Scholar
  85. [71.85]
    K. Sugawara, T. Kazama, T. Watanabe: Foraging behavior of interacting robots with virtual pheromone, Proc. Int. Conf. Intell. Robot. Syst. (IROS 2004) (2004) pp. 3074–3079Google Scholar
  86. [71.86]
    S. Garnier, F. Tâche, M. Combe, A. Grimal, G. Theraulaz: Alice in pheromone land: An experimental setup for the study of ant-like robots, Proc. IEEE Swarm Intell. Symp. (SIS 2007), Piscataway (2007) pp. 37–44CrossRefGoogle Scholar
  87. [71.87]
    A. Campo, Á. Gutiérrez, S. Nouyan, C. Pinciroli, V. Longchamp, S. Garnier, M. Dorigo: Artificial pheromone for path selection by a foraging swarm of robots, Biol. Cybern. 103(5), 339–352 (2010)CrossRefGoogle Scholar
  88. [71.88]
    E.J.H. Robinson, N.R. Franks, S. Ellis, S. Okuda, J.A.R. Marshall: A simple threshold rule is sufficient to explain sophisticated collective decision-making, PLoS ONE 6(5), e19981 (2011)CrossRefGoogle Scholar
  89. [71.89]
    M. Dorigo, D. Floreano, L.M. Gambardella, F. Mondada, S. Nolfi, T. Baaboura, M. Birattari, M. Bonani, M. Brambilla, A. Brutschy, D. Burnier, A. Campo, A.L. Christensen, A. Decugnire, G.A. Di Caro, F. Ducatelle, E. Ferrante, A. Fröster, J.M. Gonzales, J. Guzzi, V. Longchamp, S. Magnenat, N. Mathews, M.A. de Montes Oca, R. O'Grady, C. Pinciroli, G. Pini, P. Rétornaz, J. Roberts, V. Sperati, T. Stirling, A. Stranieri, T. Stützle, V. Trianni, E. Tuci, A.E. Turgut, F. Vaussard: Swarmanoid: A novel concept for the study of heterogeneous robotic swarms, IEEE Robot. Autom. Mag. 20(4), 60–71 (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Unit of Social EcologyUniversité Libre de BruxellesBrusselsBelgium
  2. 2.Ist. Scienze e Tecnologie della CognizioneConsiglio Nazionale delle RicercheRomaItaly

Personalised recommendations