Advertisement

Stochastic Local Search Algorithms: An Overview

  • Holger H. Hoos
  • Thomas Stützle
Part of the Springer Handbooks book series (SHB)

Abstract

In this chapter, we give an overview of the main concepts underlying the stochastic local search (SLS) framework and outline some of the most relevant SLS techniques. We also discuss some major recent research directions in the area of stochastic local search. The remainder of this chapter is structured as follows. In Sect. 54.1, we situate the notion of SLS within the broader context of fundamental search paradigms and briefly review the definition of an SLS algorithm. In Sect. 54.2, we summarize the main issues and trends in the design of greedy constructive and iterative improvement algorithms, while in Sects. 54.354.5, we provide a concise overview of some of the most widely used simple, hybrid, and population-based SLS methods. Finally, in Sect. 54.6, we discuss some recent topics of interest, such as the systematic design of SLS algorithms and methods for the automatic configuration of SLS

Keywords

Local Search Candidate Solution Travel Salesman Problem Greedy Randomize Adaptive Search Procedure Iterate Local Search 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
ACO

ant colony optimization

DLS

dynamic local search

EA

evolutionary algorithm

GRASP

greedy randomized adaptive search procedure

IG

iterated greedy

ILS

iterated local search

MA

memetic algorithm

PbO

programming by optimization

PII

probabilistic iterative improvement

RII

randomized iterative improvement

SA

simulated annealing

SAT

satisfiability

SLS

stochastic local search

TSP

traveling salesman problem

TS

tabu search

VND

variable neighborhood descent

VNS

variable neighborhood search

References

  1. [54.1]
    H.H. Hoos, T. Stützle: Stochastic Local Search—Foundations and Applications (Morgan Kaufmann, San Francisco 2004)zbMATHGoogle Scholar
  2. [54.2]
    G.R. Schreiber, O.C. Martin: Cut size statistics of graph bisection heuristics, SIAM J. Optim. 10(1), 231–251 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  3. [54.3]
    M. Gendreau, J.-Y. Potvin (Eds.): Handbook of Metaheuristics, International Series in Operations Research & Management Science, Vol. 146 (Springer, New York 2010)zbMATHGoogle Scholar
  4. [54.4]
    S. Kirkpatrick, C.D. Gelatt Jr., M.P. Vecchi: Optimization by simulated annealing, Science 220, 671–680 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  5. [54.5]
    V. Cerný: A thermodynamical approach to the traveling salesman problem, J. Optim. Theory Appl. 45(1), 41–51 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  6. [54.6]
    F. Glover: Future paths for integer programming and links to artificial intelligence, Comput. Oper. Res. 13(5), 533–549 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  7. [54.7]
    F. Glover: Tabu search – Part I, ORSA J. Comput. 1(3), 190–206 (1989)zbMATHCrossRefGoogle Scholar
  8. [54.8]
    F. Glover: Tabu search – Part II, ORSA J. Comput. 2(1), 4–32 (1990)zbMATHCrossRefGoogle Scholar
  9. [54.9]
    P. Hansen, B. Jaumard: Algorithms for the maximum satisfiability problem, Computing 44, 279–303 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  10. [54.10]
    T.A. Feo, M.G.C. Resende: A probabilistic heuristic for a computationally difficult set covering problem, Oper. Res. Lett. 8(2), 67–71 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  11. [54.11]
    H.R. Lourenço, O. Martin, T. Stützle: Iterated local search. In: Handbook of Metaheuristics, ed. by F. Glover, G. Kochenberger (Kluwer, Norwell 2002) pp. 321–353Google Scholar
  12. [54.12]
    J.H. Holland: Adaption in Natural and Artificial Systems (The University of Michigan, Ann Arbor 1975)zbMATHGoogle Scholar
  13. [54.13]
    D.E. Goldberg: Genetic Algorithms in Search, Optimization, and Machine Learning (Addison-Wesley, Reading 1989)zbMATHGoogle Scholar
  14. [54.14]
    I. Rechenberg: Evolutionsstrategie – Optimierung technischer Systeme nach Prinzipien der biologischen Information (Fromman, Freiburg, Germany 1973)Google Scholar
  15. [54.15]
    H.-P. Schwefel: Numerical Optimization of Computer Models (Wiley, Chichester 1981)zbMATHGoogle Scholar
  16. [54.16]
    F. Glover: Heuristics for integer programming using surrogate constraints, Decis. Sci. 8, 156–164 (1977)CrossRefGoogle Scholar
  17. [54.17]
    F. Glover, M. Laguna, R. Martí: Scatter search and path relinking: Advances and applications. In: Handbook of Metaheuristics, ed. by F. Glover, G. Kochenberger (Kluwer, Norwell 2002) pp. 1–35Google Scholar
  18. [54.18]
    M. Dorigo, V. Maniezzo, A. Colorni: Positive feedback as a search strategy. Techn. Rep. 91-016, Dipartimento di Elettronica, Politecnico di Milano, Italy, 1991Google Scholar
  19. [54.19]
    M. Dorigo, V. Maniezzo, A. Colorni: Ant System: Optimization by a colony of cooperating agents, IEEE Trans. Syst. Man. Cybern. B 26(1), 29–41 (1996)CrossRefGoogle Scholar
  20. [54.20]
    M. Dorigo, T. Stützle: Ant Colony Optimization (MIT, Cambridge 2004)zbMATHGoogle Scholar
  21. [54.21]
    T. Stützle, M. Birattari, H.H. Hoos: Engineering stochastic local search algorithms – designing, implementing and analyzing effective heuristics, Lect. Notes Comput. Sci. 4638, 1–221 (2007)zbMATHCrossRefGoogle Scholar
  22. [54.22]
    T. Stützle, M. Birattari, H.H. Hoos: Engineering stochastic local search algorithms – designing, implementing and analyzing effective heuristics, Lect. Notes Comput. Sci. 5217, 1–155 (2009)zbMATHGoogle Scholar
  23. [54.23]
    H.H. Hoos: Programming by optimization, Commun. ACM 55, 70–80 (2012)CrossRefGoogle Scholar
  24. [54.24]
    S. Khanna, R. Motwani, M. Sudan, U. Vazirani: On syntactic versus computational views of approximability, Proc. 35th Annu. IEEE Symp. Found. Comput. Sci. (IEEE Computer Society, Los Alamitos 1994) pp. 819–830CrossRefGoogle Scholar
  25. [54.25]
    F. Glover, M. Laguna: Tabu Search (Kluwer, Boston 1997)zbMATHCrossRefGoogle Scholar
  26. [54.26]
    K. Sörensen, F. Glover: Metaheuristics. In: Encyclopedia of Operations Research and Management Science, ed. by S.I. Gass, M.C. Fu (Springer, Berlin 2013) pp. 960–970CrossRefGoogle Scholar
  27. [54.27]
    C.H. Papadimitriou, K. Steiglitz: Combinatorial Optimization – Algorithms and Complexity (Prentice Hall, Englewood Cliffs 1982)zbMATHGoogle Scholar
  28. [54.28]
    J.L. Bentley: Fast algorithms for geometric traveling salesman problems, ORSA J. Comput. 4(4), 387–411 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  29. [54.29]
    O.C. Martin, S.W. Otto, E.W. Felten: Large-step Markov chains for the traveling salesman problem, Complex Syst. 5(3), 299–326 (1991)MathSciNetzbMATHGoogle Scholar
  30. [54.30]
    D.S. Johnson, L.A. McGeoch: The traveling salesman problem: A case study in local optimization. In: Local Search in Combinatorial Optimization, ed. by E.H.L. Aarts, J.K. Lenstra (Wiley, Chichester 1997) pp. 215–310Google Scholar
  31. [54.31]
    A.S. Jain, B. Rangaswamy, S. Meeran: New and “stronger” job-shop neighbourhoods: A focus on the method of Nowicki and Smutnicki, J. Heuristics 6(4), 457–480 (2000)zbMATHCrossRefGoogle Scholar
  32. [54.32]
    R.K. Congram, C.N. Potts, S. van de Velde: An iterated dynasearch algorithm for the single-machine total weighted tardiness scheduling problem, INFORMS J. Comput. 14(1), 52–67 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  33. [54.33]
    M. Yannakakis: The analysis of local search problems and their heuristics, Lect. Notes Comput. Sci. 415, 298–310 (1990)zbMATHCrossRefGoogle Scholar
  34. [54.34]
    R. Battiti, M. Protasi: Reactive search, a history-based heuristic for MAX-SAT, ACM J. Exp. Algorithmics 2, 2 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  35. [54.35]
    P. Hansen, N. Mladenović: Variable neighborhood search: Principles and applications, Eur. J. Oper. Res. 130(3), 449–467 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  36. [54.36]
    P. Hansen, N. Mladenović: Variable neighborhood search. In: Handbook of Metaheuristics, ed. by F. Glover, G. Kochenberger (Kluwer, Norwell 2002) pp. 145–184Google Scholar
  37. [54.37]
    R.K. Ahuja, O. Ergun, J.B. Orlin, A.P. Punnen: A survey of very large-scale neighborhood search techniques, Discrete Appl. Math. 123(1–3), 75–102 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  38. [54.38]
    B.W. Kernighan, S. Lin: An efficient heuristic procedure for partitioning graphs, Bell Syst. Technol. J. 49, 213–219 (1970)zbMATHCrossRefGoogle Scholar
  39. [54.39]
    S. Lin, B.W. Kernighan: An effective heuristic algorithm for the traveling salesman problem, Oper. Res. 21(2), 498–516 (1973)MathSciNetzbMATHCrossRefGoogle Scholar
  40. [54.40]
    F. Glover: Ejection chain, reference structures and alternating path methods for traveling salesman problems, Discrete. Appl. Math. 65(1–3), 223–253 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  41. [54.41]
    R.K. Ahuja, O. Ergun, J.B. Orlin, A.P. Punnen: Very large-scale neighborhood search. In: Handbook of Approximation Algorithms and Metaheuristics, Computer and Information Science Series, ed. by T.F. Gonzalez (Chapman Hall/CRC, Boca Raton 2007) pp. 1–12Google Scholar
  42. [54.42]
    I. Dumitrescu: Constrained Path and Cycle Problems, Ph.D. Thesis (University of Melbourne, Department of Mathematics and Statistics 2002)Google Scholar
  43. [54.43]
    M. Chiarandini, I. Dumitrescu, T. Stützle: Very large-scale neighborhood search: Overview and case studies on coloring problems. In: Hybrid Metaheuristics – An Emergent Approach to Optimization, Studies in Computational Intelligence, Vol. 117, ed. by C. Blum, M.J. Blesa Aguilera, A. Roli, M. Sampels (Springer, Berlin 2008) pp. 117–150 Google Scholar
  44. [54.44]
    C.N. Potts, S. van de Velde: Dynasearch: Iterative local improvement by dynamic programming; Part I, the traveling salesman problem. Techn. Rep. LPOM–9511, Faculty of Mechanical Engineering, University of Twente, Enschede, The Netherlands, 1995Google Scholar
  45. [54.45]
    P.M. Thompson, J.B. Orlin: The theory of cycle transfers, Working Paper OR 200-89, Operations Research Center, MIT, Cambridge 1989Google Scholar
  46. [54.46]
    P.M. Thompson, H.N. Psaraftis: Cyclic transfer algorithm for multivehicle routing and scheduling problems, Oper. Res. 41, 935–946 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  47. [54.47]
    K. Helsgaun: An effective implementation of the Lin-Kernighan traveling salesman heuristic, Eur. J. Oper. Res. 126(1), 106–130 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  48. [54.48]
    A. Grosso, F. Della Croce, R. Tadei: An enhanced dynasearch neighborhood for the single-machine total weighted tardiness scheduling problem, Oper. Res. Lett. 32(1), 68–72 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  49. [54.49]
    B. Selman, H. Kautz: Domain-independent extensions to GSAT: Solving large structured satisfiability problems, Proc. 13th Int. Jt. Conf. Artif. Intell., ed. by R. Bajcsy (Morgan Kaufmann, San Francisco 1993) pp. 290–295Google Scholar
  50. [54.50]
    B. Selman, H. Kautz, B. Cohen: Noise strategies for improving local search, Proc. 12th Natl. Conf. Artif. Intell., AAAI/The MIT (1994) pp. 337–343Google Scholar
  51. [54.51]
    O. Steinmann, A. Strohmaier, T. Stützle: Tabu search vs. random walk, Lect. Notes Artif. Intell. 1303, 337–348 (1997)Google Scholar
  52. [54.52]
    O.J. Mengshoel: Understanding the role of noise in stochastic local search: Analysis and experiments, Artif. Intell. 172(8/9), 955–990 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  53. [54.53]
    D.T. Connolly: An improved annealing scheme for the QAP, Eur. J. Oper. Res. 46(1), 93–100 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  54. [54.54]
    M. Fielding: Simulated annealing with an optimal fixed temperature, SIAM J. Optim. 11(2), 289–307 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  55. [54.55]
    E.H.L. Aarts, J.H.M. Korst, P.J.M. van Laarhoven: Simulated annealing. In: Local Search in Combinatorial Optimization, ed. by E.H.L. Aarts, J.K. Lenstra (Wiley, Chichester 1997) pp. 91–120Google Scholar
  56. [54.56]
    A.G. Nikolaev, S.H. Jacobsen: Simulated annealing. In: Handbook of Metaheuristics, International Series in Operations Research & Management Science, Vol. 146, ed. by M. Gendreau, J.-Y. Potvin (Springer, New York 2010) pp. 1–40 2 edition, chapter 8 Google Scholar
  57. [54.57]
    R. Battiti, G. Tecchiolli: Simulated annealing and tabu search in the long run: A comparison on QAP tasks, Comput. Math. Appl. 28(6), 1–8 (1994)zbMATHCrossRefGoogle Scholar
  58. [54.58]
    C. Voudouris: Guided Local Search for Combinatorial Optimization Problems, Ph.D. Thesis (University of Essex, Department of Computer Science, Colchester 1997)zbMATHGoogle Scholar
  59. [54.59]
    C. Voudouris, E. Tsang: Guided local search and its application to the travelling salesman problem, Eur. J. Oper. Res. 113(2), 469–499 (1999)zbMATHCrossRefGoogle Scholar
  60. [54.60]
    Y. Shang, B.W. Wah: A discrete Lagrangian-based global-search method for solving satisfiability problems, J. Glob. Optim. 12(1), 61–100 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  61. [54.61]
    D. Schuurmans, F. Southey, R.C. Holte: The exponentiated subgradient algorithm for heuristic boolean programming, Proc. 17th Int. Jt. Conf. Artif. Intell., ed. by B. Nebel (Morgan Kaufmann, San Francisco 2001) pp. 334–341Google Scholar
  62. [54.62]
    F. Hutter, D.A.D. Tompkins, H.H. Hoos: Scaling and probabilistic smoothing: Efficient dynamic local search for SAT, Lect. Notes Comput. Sci. 2470, 233–248 (2002)CrossRefGoogle Scholar
  63. [54.63]
    W.J. Pullan, H.H. Hoos: Dynamic local search for the maximum clique problem, J. Artif. Intell. Res. 25, 159–185 (2006)zbMATHGoogle Scholar
  64. [54.64]
    M.G.C. Resende, C.C. Ribeiro: Greedy randomized adaptive search procedures: Advances and applications. In: Handbook of Metaheuristics, International Series in Operations Research & Management Science, Vol. 146, ed. by M. Gendreau, J.-Y. Potvin (Springer, New York 2010) pp. 281–317Google Scholar
  65. [54.65]
    G. Schrimpf, J. Schneider, H. Stamm-Wilbrandt, G. Dueck: Record breaking optimization results using the ruin and recreate principle, J. Comput. Phys. 159(2), 139–171 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  66. [54.66]
    A. Cesta, A. Oddi, S.F. Smith: Iterative flattening: A scalable method for solving multi-capacity scheduling problems, Proc. 17th Natl. Conf. Artif. Intell., AAAI/The MIT (2000) pp. 742–747Google Scholar
  67. [54.67]
    A.J. Richmond, J.E. Beasley: An iterative construction heuristic for the ore selection problem, J. Heuristics 10, 153–167 (2004)CrossRefGoogle Scholar
  68. [54.68]
    L.W. Jacobs, M.J. Brusco: A local search heuristic for large set-covering problems, Nav. Res. Logist. 42(7), 1129–1140 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  69. [54.69]
    R. Ruiz, T. Stützle: A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem, Eur. J. Oper. Res. 177(3), 2033–2049 (2007)zbMATHCrossRefGoogle Scholar
  70. [54.70]
    R. Ruiz, T. Stützle: An iterated greedy heuristic for the sequence dependent setup times flowshop problem with makespan and weighted tardiness objectives, Eur. J. Oper. Res. 187(3), 1143–1159 (2008)zbMATHCrossRefGoogle Scholar
  71. [54.71]
    D.S. Johnson, L.A. McGeoch: Experimental analysis of heuristics for the STSP. In: The Traveling Salesman Problem and its Variations, ed. by G. Gutin, A. Punnen (Kluwer, Dordrecht, The Netherlands 2002) pp. 369–443Google Scholar
  72. [54.72]
    D. Applegate, W. Cook, A. Rohe: Chained Lin-Kernighan for large traveling salesman problems, INFORMS J. Comput. 15(1), 82–92 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  73. [54.73]
    H.R. Lourenço, O. Martin, T. Stützle: Iterated local search: Framework and applications. In: Handbook of Metaheuristics, International Series in Operations Research & Management Science, Vol. 146, ed. by M. Gendreau, J.-Y. Potvin (Springer, New York 2010) pp. 363–397CrossRefGoogle Scholar
  74. [54.74]
    T. Stützle: Iterated local search for the quadratic assignment problem, Eur. J. Oper. Res. 174(3), 1519–1539 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  75. [54.75]
    I. Hong, A.B. Kahng, B.R. Moon: Improved large-step Markov chain variants for the symmetric TSP, J. Heuristics 3(1), 63–81 (1997)zbMATHCrossRefGoogle Scholar
  76. [54.76]
    S. Goss, S. Aron, J.L. Deneubourg, J.M. Pasteels: Self-organized shortcuts in the Argentine ant, Naturwissenschaften 76, 579–581 (1989)CrossRefGoogle Scholar
  77. [54.77]
    J.-L. Deneubourg, S. Aron, S. Goss, J.-M. Pasteels: The self-organizing exploratory pattern of the Argentine ant, J. Insect Behav. 3, 159–168 (1990)CrossRefGoogle Scholar
  78. [54.78]
    T. Stützle, H.H. Hoos: MAX–MIN ant system, Future Gener. Comput. Syst. 16(8), 889–914 (2000)zbMATHCrossRefGoogle Scholar
  79. [54.79]
    M. Dorigo, M. Birattari, T. Stützle: Ant colony optimization: Artificial ants as a computational intelligence technique, IEEE Comput. Intell. Mag. 1(4), 28–39 (2006)CrossRefGoogle Scholar
  80. [54.80]
    M. Dorigo, T. Stützle: Ant colony optimization: Overview and recent advances. In: Handbook of Metaheuristics, International Series in Operations Research & Management Science, Vol. 146, ed. by M. Gendreau, J.-Y. Potvin (Springer, New York 2010) pp. 227–263CrossRefGoogle Scholar
  81. [54.81]
    M. Dorigo, G. Di Caro: The ant colony optimization meta-heuristic. In: New Ideas in Optimization, ed. by D. Corne, M. Dorigo, F. Glover (McGraw Hill, London 1999) pp. 11–32Google Scholar
  82. [54.82]
    M. Dorigo, G. Di Caro, L.M. Gambardella: Ant algorithms for discrete optimization, Artif. Life 5(2), 137–172 (1999)CrossRefGoogle Scholar
  83. [54.83]
    E. Bonabeau, M. Dorigo, G. Theraulaz: Swarm Intelligence: From Natural to Artificial Systems (Oxford Univ. Press, New York 1999)zbMATHGoogle Scholar
  84. [54.84]
    J.-Y. Potvin: Genetic algorithms for the traveling salesman problem, Ann. Oper. Res. 63, 339–370 (1996)zbMATHCrossRefGoogle Scholar
  85. [54.85]
    P. Merz, B. Freisleben: Memetic algorithms for the traveling salesman problem, Complex Syst. 13(4), 297–345 (2001)MathSciNetzbMATHGoogle Scholar
  86. [54.86]
    P. Moscato: Memetic algorithms: A short introduction. In: New Ideas in Optimization, ed. by D. Corne, M. Dorigo, F. Glover (McGraw Hill, London 1999) pp. 219–234Google Scholar
  87. [54.87]
    M. Laguna, R. Martí: Scatter Search: Methodology and Implementations in C, Vol. 24 (Kluwer, Boston 2003)zbMATHGoogle Scholar
  88. [54.88]
    M. Ehrgott, X. Gandibleux: Approximative solution methods for combinatorial multicriteria optimization, TOP 12(1), 1–88 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  89. [54.89]
    M. Ehrgott, X. Gandibleux: Hybrid metaheuristics for multi-objective combinatorial optimization. In: Hybrid Metaheuristics: An emergent approach for optimization, ed. by C. Blum, M.J. Blesa, A. Roli, M. Sampels (Springer, Berlin, Germany 2008) pp. 221–259CrossRefGoogle Scholar
  90. [54.90]
    L. Paquete, T. Stützle: Stochastic local search algorithms for multiobjective combinatorial optimization: A review. In: Handbook of Approximation Algorithms and Metaheuristics, Computer and Information Science Series, ed. by T.F. Gonzalez (Chapman Hall/CRC, Boca Raton 2007) pp. 1–15Google Scholar
  91. [54.91]
    L. Bianchi, M. Dorigo, L.M. Gambardella, W.J. Gutjahr: A survey on metaheuristics for stochastic combinatorial optimization, Nat. Comput. 8(2), 239–287 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  92. [54.92]
    D. Ouelhadj, S. Petrovic: A survey of dynamic scheduling in manufacturing systems, J. Sched. 12(4), 417–431 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  93. [54.93]
    V. Pillac, M. Gendreau, C. Guéret, A. L. Medaglia: A review of dynamic vehicle routing problems. Techn. Rep. CIRRELT-2011-62, Interuniversity Research Centre on Enterprise Networks, Logistics and Transportation, Montréal, Canada, October 2011Google Scholar
  94. [54.94]
    V. Maniezzo, T. Stützle, S. Voß (Eds.): Matheuristics – Hybridizing Metaheuristics and Mathematical Programming, Annals of Information Systems, Vol. 10 (Springer, New York 2010)Google Scholar
  95. [54.95]
    J. Puchinger, G.R. Raidl, S. Pirkwieser: MetaBoosting: Enhancing integer programming techniques by metaheuristics. In: Matheuristics – Hybridizing Metaheuristics and Mathematical Programming, Annals of Information Systems, Vol. 10, ed. by V. Maniezzo, T. Stützle, S. Voß (Springer, New York 2010) pp. 71–102Google Scholar
  96. [54.96]
    M. Fischetti, A. Lodi: Local branching, Math. Program. 98(1/3), 23–47 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  97. [54.97]
    E. Danna, E. Rothberg, C. Le Pape: Exploring relaxation induced neighborhoods to improve mip solutions, Math Program. 102(1), 71–90 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  98. [54.98]
    V. Maniezzo: Exact and approximate nondeterministic tree-search procedures for the quadratic assignment problem, INFORMS J. Comput. 11(4), 358–369 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  99. [54.99]
    C. Blum: Beam-ACO for simple assembly line balancing, INFORMS J. Comput. 20(4), 618–627 (2008)zbMATHCrossRefGoogle Scholar
  100. [54.100]
    W. Cook, P. Seymour: Tour merging via branch-decomposition, INFORMS J. Comput. 15(3), 233–248 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  101. [54.101]
    M.A. Boschetti, V. Maniezzo: Benders decomposition, Lagrangean relaxation and metaheuristic design, J. Heuristics 15(3), 283–312 (2009)zbMATHCrossRefGoogle Scholar
  102. [54.102]
    I. Dumitrescu, T. Stützle: Usage of exact algorithms to enhance stochastic local search algorithms. In: Matheuristics – Hybridizing Metaheuristics and Mathematical Programming, Annals of Information Systems, Vol. 10, ed. by V. Maniezzo, T. Stützle, S. Voß (Springer, New York 2010) pp. 103–134Google Scholar
  103. [54.103]
    L. Jourdan, M. Basseur, E.-G. Talbi: Hybridizing exact methods and metaheuristics: A taxonomy, Eur. J. Oper. Res. 199(3), 620–629 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  104. [54.104]
    C. Demetrescu, I. Finocchi, G.F. Italiano: Algorithm engineering, Bulletin EATCS 79, 48–63 (2003)zbMATHGoogle Scholar
  105. [54.105]
    I. Sommerville (Ed.): Software Engineering, 7th edn. (Addison Wesley, Boston 2004)zbMATHGoogle Scholar
  106. [54.106]
    P. Balaprakash, M. Birattari, T. Stützle: Engineering stochastic local search algorithms: A case study in estimation-based local search for the probabilistic traveling salesman problem. In: Recent Advances in Evolutionary Computation for Combinatorial Optimization, Studies in Computational Intelligence, Vol. 153, ed. by C. Cotta, J. van Hemert (Springer, Berlin 2008) pp. 55–69CrossRefGoogle Scholar
  107. [54.107]
    S. Cahon, N. Melab, E.-G. Talbi: ParadisEO: A framework for the reusable design of parallel and distributed metaheuristics, J. Heuristics 10(3), 357–380 (2004)zbMATHCrossRefGoogle Scholar
  108. [54.108]
    Paradiseo: A Software Framework for Metaheuristics, http://paradiseo.gforge.inria.fr
  109. [54.109]
    L. Di Gaspero, A. Schaerf: Writing local search algorithms using EASYLOCAL++. In: Optimization Software Class Libraries, ed. by S. Voß, D.L. Woodruff (Kluwer, Boston, 2002) pp. 155–175Google Scholar
  110. [54.110]
  111. [54.111]
    P. Van Hentenryck, L. Michel: Constraint-Based Local Search (MIT, Cambridge 2005)zbMATHGoogle Scholar
  112. [54.112]
    K. Mehlhorn, S. Näher: LEDA: A Platform for Combinatorial and Geometric Computing (Cambridge Univ. Press, Cambridge 1999)zbMATHGoogle Scholar
  113. [54.113]
    The R Project for Statistical Computing, http://www.r-project.org
  114. [54.114]
    C.W. Nell, C. Fawcett, H.H. Hoos, K. Leyton-Brown: HAL: A framework for the automated design and analysis of high-performance algorithms, Lect. Notes Comput. Sci. 6683, 600–615 (2011)CrossRefGoogle Scholar
  115. [54.115]
    HAL: The High-performance Algorithm Laboratory, http://hal.cs.ubc.ca/
  116. [54.116]
    P. Merz, B. Freisleben: Fitness landscapes and memetic algorithm design. In: New Ideas in Optimization, ed. by D. Corne, M. Dorigo, F. Glover (McGraw Hill, London 1999) pp. 244–260Google Scholar
  117. [54.117]
    L. Xu, H. Hoos, K. Leyton-Brown: Hierarchical hardness models for SAT, Lect. Notes Comput. Sci. 4741, 696–711 (2007)zbMATHCrossRefGoogle Scholar
  118. [54.118]
    J.-P. Watson, L.D. Whitley, A.E. Howe: Linking search space structure, run-time dynamics, and problem difficulty: A step towards demystifying tabu search, J. Artif. Intell. Res. 24, 221–261 (2005)zbMATHCrossRefGoogle Scholar
  119. [54.119]
    H.H. Hoos: Automated algorithm configuration and parameter tuning. In: Autonomous Search, ed. by Y. Hamadi, E. Monfroy, F. Saubion (Springer, Berlin 2012) pp. 37–71Google Scholar
  120. [54.120]
    B. Adenso-Díaz, M. Laguna: Fine-tuning of algorithms using fractional experimental designs and local search, Oper. Res. 54(1), 99–114 (2006)zbMATHCrossRefGoogle Scholar
  121. [54.121]
    S.P. Coy, B.L. Golden, G.C. Runger, E.A. Wasil: Using experimental design to find effective parameter settings for heuristics, J. Heuristics 7(1), 77–97 (2001)zbMATHCrossRefGoogle Scholar
  122. [54.122]
    T. Bartz-Beielstein: Experimental Research in Evolutionary Computation – The New Experimentalism (Springer, Berlin 2006)zbMATHGoogle Scholar
  123. [54.123]
    F. Hutter, H.H. Hoos, K. Leyton-Brown, K.P. Murphy: An experimental investigation of model-based parameter optimisation: SPO and beyond, Genet. Evol. Comput. Conf., GECCO 2009, ed. by F. Rothlauf (ACM, New York 2009) pp. 271–278Google Scholar
  124. [54.124]
    M. Birattari, T. Stützle, L. Paquete, K. Varrentrapp: A racing algorithm for configuring metaheuristics, Proc. Genet. Evol. Comput. Conf. (GECCO-2002), ed. by W.B. Langdon, E. Cantú-Paz, K.E. Mathias, R. Roy, D. Davis, R. Poli, K. Balakrishnan, V. Honavar, G. Rudolph, J. Wegener, L. Bull, M.A. Potter, A.C. Schultz, J.F. Miller, E.K. Burke, N. Jonoska (Morgan Kaufmann, San Francisco 2002) pp. 11–18Google Scholar
  125. [54.125]
    M. Birattari, Z. Yuan, P. Balaprakash, T. Stützle: F-Race and iterated F-Race: An overview. In: Experimental Methods for the Analysis of Optimization Algorithms, ed. by T. Bartz-Beielstein, M. Chiarandini, L. Paquete, M. Preuss (Springer, Berlin, Germany 2010) pp. 311–336CrossRefGoogle Scholar
  126. [54.126]
    F. Hutter, H.H. Hoos, T. Stützle: Automatic algorithm configuration based on local search, Proc. 22nd Conf. Artif. Intell. (AAAI), ed. by R.C. Holte, A. Howe (AAAI / The MIT, Menlo Park 2007) pp. 1152–1157Google Scholar
  127. [54.127]
    C. Ansótegui, M. Sellmann, K. Tierney: A gender-based genetic algorithm for the automatic configuration of algorithms, Proc. 15th Int. Conf. Princ. Pract. Constraint Program. (CP 2009) (2009) pp. 142–157Google Scholar
  128. [54.128]
    F. Hutter, H.H. Hoos, K. Leyton-Brown, T. Stützle: Param ILS: An automatic algorithm configuration framework, J. Artif. Intell. Res. 36, 267–306 (2009)zbMATHGoogle Scholar
  129. [54.129]
    F. Hutter, H.H. Hoos, K. Leyton-Brown: Sequential model-based optimization for general algorithm configuration, Lect. Notes Comput. Sci. 6683, 507–523 (2011)CrossRefGoogle Scholar
  130. [54.130]
    F. Hutter, H.H. Hoos, K. Leyton-Brown: Parallel algorithm configuration, Lect. Notes Comput. Sci. 7219, 55–70 (2011)CrossRefGoogle Scholar
  131. [54.131]
    R. Battiti, M. Brunato, F. Mascia: Reactive Search and Intelligent Optimization, Operations Research/Computer Science Interfaces Series, Vol. 45 (Springer, New York 2008)zbMATHGoogle Scholar
  132. [54.132]
    A.E. Eiben, Z. Michalewicz, M. Schoenauer, J.E. Smith: Parameter control in evolutionary algorithms. In: Parameter Setting in Evolutionary Algorithms, ed. by F. Lobo, C.F. Lima, Z. Michalewicz (Springer, Berlin, Germany 2007) pp. 19–46CrossRefGoogle Scholar
  133. [54.133]
    F. Hutter, Y. Hamadi, H.H. Hoos, K. Leyton-Brown: Performance prediction and automated tuning of randomized and parametric algorithms, Lect. Notes Comput. Sci. 4204, 213–228 (2006)zbMATHCrossRefGoogle Scholar
  134. [54.134]
    L. Xu, H.H. Hoos, K. Leyton-Brown: Hydra: Automatically configuring algorithms for portfolio-based selection, Proc. 24th AAAI Conf. Artif. Intell. (AAAI-10) (2010) pp. 210–216Google Scholar
  135. [54.135]
    S. Kadioglu, Y. Malitsky, M. Sellmann, K. Tierney: ISAC – Instance-specific algorithm configuration, Proc. 19th Eur. Conf. Artif. Intell. (ECAI 2010) (2010) pp. 751–756Google Scholar
  136. [54.136]
    H.H. Hoos: Computer-aided algorithm design using generalised local search machines and related design patterns. Techn. Rep. TR-2009-26, University of British Columbia, Department of Computer Science, 2009Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Dep. Computer ScienceUniversity of British ColumbiaVancouverCanada
  2. 2.IIRIDIA, CP 194/6Université libre de Bruxelles (ULB)BrusselsBelgium

Personalised recommendations