Application of Fuzzy Techniques to Autonomous Robots

  • Ismael Rodríguez FdezEmail author
  • Manuel Mucientes
  • Alberto Bugarín Diz
Part of the Springer Handbooks book series (SHB)


The application of fuzzy techniques in robotics has become widespread in the last years and in different fields of robotics, such as behavior design, coordination of behavior, perception, localization, etc. The significance of the contributions was high until the end of the 1990s, where the main aim in robotics was the implementation of basic behaviors. In the last years, the focus in robotics moved to building robots that operate autonomously in real environments; the actual impact of fuzzy techniques in the robotics community is not as deep as it was in the early stages of robotics or as it is in other application areas (e. g., medicine, processes industry …). In spite of this, new emerging areas in robotics such as human–robot interaction, or well-established ones, such as perception, are good examples of new potential realms of applications where (hybridized) fuzzy approaches will surely be capable of exhibiting their capacity to deal with such complex and dynamic scenarios.


Fuzzy Logic Mobile Robot Unmanned Aerial Vehicle Fuzzy Controller Trajectory Tracking 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Computing Research and Education


degree of freedom


digital signal processor


Excellence in Research for Australia


fuzzy logic controller


fuzzy logic system


genetic fuzzy system


linear-quadratic regulator




radio frequency identification


simultaneous localization and mapping




unmanned aerial vehicle


  1. [20.1]
    A. Saffiotti: The uses of fuzzy logic in autonomous robot navigation, Soft Comput. 1(4), 180–197 (1997)CrossRefGoogle Scholar
  2. [20.2]
    E.H. Ruspini: Fuzzy logic in the flakey robot, Proc. Int. Conf. Fuzzy Log. Neural Netw., Iizuka (1990) pp. 767–770Google Scholar
  3. [20.3]
    A. Saffiotti, E.H. Ruspini, K. Konolige: Blending reactivity and goal-directedness in a fuzzy controller, IEEE Int. Conf. Fuzzy Syst., San Francisco (1993) pp. 134–139Google Scholar
  4. [20.4]
    A. Saffiotti, K. Konolige, E.H. Ruspini: A multivalued-logic approach to integrating planning and control, Artif. Intell. 76(1), 481–526 (1995)CrossRefGoogle Scholar
  5. [20.5]
  6. [20.6]
  7. [20.7]
    T.S. Li, S.-J. Chang, Y.-X. Chen: Implementation of human-like driving skills by autonomous fuzzy behavior control on an FPGA-based car-like mobile robot, IEEE Trans. Ind. Electron. 50(5), 867–880 (2003)CrossRefGoogle Scholar
  8. [20.8]
    M. Mucientes, R. Iglesias, C.V. Regueiro, A. Bugarin, S. Barro: A fuzzy temporal rule-based velocity controller for mobile robotics, Fuzzy Sets Syst. 134(1), 83–99 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  9. [20.9]
    V.M. Peri, D. Simon: Fuzzy logic control for an autonomous robot, Proc. Annu. Meet. N. Am. Fuzzy Inf. Process. Soc. (2005) pp. 337–342Google Scholar
  10. [20.10]
    M. Mucientes, D.L. Moreno, A. Bugarín, S. Barro: Evolutionary learning of a fuzzy controller for wall-following behavior in mobile robotics, Soft Comput. 10(10), 881–889 (2006)CrossRefGoogle Scholar
  11. [20.11]
    M. Mucientes, D.L. Moreno, A. Bugarn, S. Barro: Design of a fuzzy controller in mobile robotics using genetic algorithms, Appl. Soft Comput. 7(2), 540–546 (2007)CrossRefGoogle Scholar
  12. [20.12]
    M. Mucientes, R. Alcalá, J. Alcalá-Fdez, J. Casillas: Learning weighted linguistic rules to control an autonomous robot, Int. J. Intell. Syst. 24, 226–251 (2009)zbMATHCrossRefGoogle Scholar
  13. [20.13]
    C. Wagner, H. Hagras: A genetic algorithm based architecture for evolving type-2 fuzzy logic controllers for real world autonomous mobile robots, Proc. IEEE Int. Conf. Fuzzy Syst. (2007) pp. 1–6Google Scholar
  14. [20.14]
    C.-F. Juang, C.-H. Hsu: Reinforcement ant optimized fuzzy controller for mobile-robot wall-following control, IEEE Trans. Ind. Electron. 56(10), 3931–3940 (2009)CrossRefGoogle Scholar
  15. [20.15]
    O. Linda, M. Manic: Comparative analysis of type-1 and type-2 fuzzy control in context of learning behaviors for mobile robotics, Proc. 36th Annu. Conf. IEEE Ind. Electron. Soc. (2010) pp. 1092–1098Google Scholar
  16. [20.16]
    C. Wagner, H. Hagras: Toward general type-2 fuzzy logic systems based on zSlices, IEEE Trans. Fuzzy Syst. 18(4), 637–660 (2010)CrossRefGoogle Scholar
  17. [20.17]
    A. Zhu, S.X. Yang: A fuzzy logic approach to reactive navigation of behavior-based mobile robots, Proc. IEEE Int. Conf. Robot. Autom. (ICRA) '04, Vol. 5 (2004) pp. 5045–5050Google Scholar
  18. [20.18]
    D.R. Parhi: Navigation of mobile robots using a fuzzy logic controller, J. Int. Robot. Syst. 42(3), 253–273 (2005)MathSciNetCrossRefGoogle Scholar
  19. [20.19]
    S.K. Pradhan, D.R. Parhi, A.K. Panda: Fuzzy logic techniques for navigation of several mobile robots, Appl. Soft Comput. 9(1), 290–304 (2009)CrossRefGoogle Scholar
  20. [20.20]
    I. Baturone, F.J. Moreno-Velo, V. Blanco, J. Ferruz: Design of embedded DSP-based fuzzy controllers for autonomous mobile robots, IEEE Trans. Ind. Electron. 55(2), 928–936 (2008)CrossRefGoogle Scholar
  21. [20.21]
    F. Cupertino, V. Giordano, D. Naso, L. Delfine: Fuzzy control of a mobile robot, Robot. Autom. Mag. IEEE 13(4), 74–81 (2006)CrossRefGoogle Scholar
  22. [20.22]
    M. Wang, J.N.-K. Liu: Fuzzy logic based robot path planning in unknown environment, Proc. Int. Conf. Mach. Learn. Cybern., Vol. 2 (2005) pp. 813–818Google Scholar
  23. [20.23]
    M. Wang, J.N.K. Liu: Fuzzy logic-based real-time robot navigation in unknown environment with dead ends, Robot. Auton. Syst. 56(7), 625–643 (2008)CrossRefGoogle Scholar
  24. [20.24]
    O.R.E. Motlagh, T.S. Hong, N. Ismail: Development of a new minimum avoidance system for a behavior-based mobile robot, Fuzzy Sets Syst. 160(13), 1929–1946 (2009)MathSciNetCrossRefGoogle Scholar
  25. [20.25]
    R. Huq, G.K.I. Mann, R.G. Gosine: Behavior-modulation technique in mobile robotics using fuzzy discrete event system, IEEE Trans. Robotics 22(5), 903–916 (2006)CrossRefGoogle Scholar
  26. [20.26]
    H.A. Hagras: A hierarchical type-2 fuzzy logic control architecture for autonomous mobile robots, IEEE Trans. Fuzzy Syst. 12(4), 524–539 (2004)CrossRefGoogle Scholar
  27. [20.27]
    P. Ritthipravat, T. Maneewarn, D. Laowattana, J. Wyatt: A modified approach to fuzzy Q learning for mobile robots, Proc. IEEE Int. Conf. Syst., Man Cybern., Vol. 3 (2004) pp. 2350–2356Google Scholar
  28. [20.28]
    L.-H. Chen, C.-H. Chiang: New approach to intelligent control systems with self-exploring process, IEEE Trans. Syst. Man Cybern. B 33(1), 56–66 (2003)CrossRefGoogle Scholar
  29. [20.29]
    N.B. Hui, V. Mahendar, D.K. Pratihar: Time-optimal, collision-free navigation of a car-like mobile robot using neuro-fuzzy approaches, Fuzzy Sets Syst. 157(16), 2171–2204 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  30. [20.30]
    L. Doitsidis, K.P. Valavanis, N.C. Tsourveloudis, M. Kontitsis: A framework for fuzzy logic based UAV navigation and control, Proc. IEEE Int. Conf. Robot. Autom. (ICRA) '04, Vol. 4 (2004) pp. 4041–4046Google Scholar
  31. [20.31]
    B. Kadmiry, D. Driankov: A fuzzy gain-scheduler for the attitude control of an unmanned helicopter, IEEE Trans. Fuzzy Syst. 12(4), 502–515 (2004)zbMATHCrossRefGoogle Scholar
  32. [20.32]
    H. Hu, P.-Y. Woo: Fuzzy supervisory sliding-mode and neural-network control for robotic manipulators, IEEE Trans. Ind. Electron. 53(3), 929–940 (2006)CrossRefGoogle Scholar
  33. [20.33]
    E.A. Merchan-Cruz, A.S. Morris: Fuzzy-GA-based trajectory planner for robot manipulators sharing a common workspace, IEEE Trans. Robot. 22(4), 613–624 (2006)CrossRefGoogle Scholar
  34. [20.34]
    J. Yu, M. Tan, S. Wang, E. Chen: Development of a biomimetic robotic fish and its control algorithm, IEEE Trans. Syst. Man Cybern. B 34(4), 1798–1810 (2004)CrossRefGoogle Scholar
  35. [20.35]
    K.-B. Sim, K.-S. Byun, F. Harashima: Internet-based teleoperation of an intelligent robot with optimal two-layer fuzzy controller, IEEE Trans. Ind. Electron. 53(4), 1362–1372 (2006)CrossRefGoogle Scholar
  36. [20.36]
    R. Martínez, O. Castillo, L.T. Aguilar: Optimization of interval type-2 fuzzy logic controllers for a perturbed autonomous wheeled mobile robot using genetic algorithms, Inf. Sci. 179(13), 2158–2174 (2009)zbMATHCrossRefGoogle Scholar
  37. [20.37]
    T. Das, I.N. Kar: Design and implementation of an adaptive fuzzy logic-based controller for wheeled mobile robots, IEEE Trans. Control Syst. Technol. 14(3), 501–510 (2006)CrossRefGoogle Scholar
  38. [20.38]
    E. Maalouf, M. Saad, H. Saliah: A higher level path tracking controller for a four-wheel differentially steered mobile robot, Robot. Auton. Syst. 54(1), 23–33 (2006)CrossRefGoogle Scholar
  39. [20.39]
    G. Antonelli, S. Chiaverini, G. Fusco: A fuzzy-logic-based approach for mobile robot path tracking, IEEE Trans. Fuzzy Syst. 15(2), 211–221 (2007)CrossRefGoogle Scholar
  40. [20.40]
    R.-J. Wai, C.-M. Liu: Design of dynamic petri recurrent fuzzy neural network and its application to path-tracking control of nonholonomic mobile robot, IEEE Trans. Ind. Electron. 56(7), 2667–2683 (2009)CrossRefGoogle Scholar
  41. [20.41]
    Z.-G. Hou, A.-M. Zou, L. Cheng, M. Tan: Adaptive control of an electrically driven nonholonomic mobile robot via backstepping and fuzzy approach, IEEE Trans. Control Syst. Technol. 17(4), 803–815 (2009)CrossRefGoogle Scholar
  42. [20.42]
    C.-Y. Chen, T.-H.S. Li, Y.-C. Yeh: EP-based kinematic control and adaptive fuzzy sliding-mode dynamic control for wheeled mobile robots, Inf. Sci. 179(1), 180–195 (2009)zbMATHCrossRefGoogle Scholar
  43. [20.43]
    Z. Song, J. Yi, D. Zhao, X. Li: A computed torque controller for uncertain robotic manipulator systems: Fuzzy approach, Fuzzy Sets Syst. 154(2), 208–226 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  44. [20.44]
    J.P. Hwang, E. Kim: Robust tracking control of an electrically driven robot: Adaptive fuzzy logic approach, IEEE Trans. Fuzzy Syst. 14(2), 232–247 (2006)CrossRefGoogle Scholar
  45. [20.45]
    S. Purwar, I.N. Kar, A.N. Jha: Adaptive control of robot manipulators using fuzzy logic systems under actuator constraints, Fuzzy Sets Syst. 152(3), 651–664 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  46. [20.46]
    C.-S. Chiu: Mixed feedforward/feedback based adaptive fuzzy control for a class of mimo nonlinear systems, IEEE Trans. Fuzzy Syst. 14(6), 716–727 (2006)CrossRefGoogle Scholar
  47. [20.47]
    N. Goléa, A. Goléa, K. Barra, T. Bouktir: Observer-based adaptive control of robot manipulators: Fuzzy systems approach, Appl. Soft Comput. 8(1), 778–787 (2008)CrossRefGoogle Scholar
  48. [20.48]
    Y. Guo, P.-Y. Woo: An adaptive fuzzy sliding mode controller for robotic manipulators, IEEE Trans. Syst. Man Cybern. A 33(2), 149–159 (2003)CrossRefGoogle Scholar
  49. [20.49]
    Y.L. Sun, M.J. Er: Hybrid fuzzy control of robotics systems, IEEE Trans. Fuzzy Syst. 12(6), 755–765 (2004)CrossRefGoogle Scholar
  50. [20.50]
    V. Santibañez, R. Kelly, M.A. Llama: A novel global asymptotic stable set-point fuzzy controller with bounded torques for robot manipulators, IEEE Trans. Fuzzy Syst. 13(3), 362–372 (2005)CrossRefGoogle Scholar
  51. [20.51]
    E. Kim: Output feedback tracking control of robot manipulators with model uncertainty via adaptive fuzzy logic, IEEE Trans. Fuzzy Syst. 12(3), 368–378 (2004)CrossRefGoogle Scholar
  52. [20.52]
    X. Jiang, Q.-L. Han: On designing fuzzy controllers for a class of nonlinear networked control systems, IEEE Trans. Fuzzy Syst. 16(4), 1050–1060 (2008)CrossRefGoogle Scholar
  53. [20.53]
    C.-L. Hwang, L.-J. Chang, Y.-S. Yu: Network-based fuzzy decentralized sliding-mode control for car-like mobile robots, IEEE Trans. Ind. Electron. 54(1), 574–585 (2007)CrossRefGoogle Scholar
  54. [20.54]
    C.-K. Lin: Nonsingular terminal sliding mode control of robot manipulators using fuzzy wavelet networks, IEEE Trans. Fuzzy Syst. 14(6), 849–859 (2006)CrossRefGoogle Scholar
  55. [20.55]
    W.W. Melek, A.A. Goldenberg: Neurofuzzy control of modular and reconfigurable robots, IEEE/ASME Trans. Mechatron. 8(3), 381–389 (2003)CrossRefGoogle Scholar
  56. [20.56]
    Y.-C. Chang: Intelligent robust control for uncertain nonlinear time-varying systems and its application to robotic systems, IEEE Trans. Syst. Man Cybern. B 35(6), 1108–1119 (2005)CrossRefGoogle Scholar
  57. [20.57]
    F. Sun, L. Li, H.-X. Li, H. Liu: Neuro-fuzzy dynamic-inversion-based adaptive control for robotic manipulators—discrete time case, IEEE Trans. Ind. Electron. 54(3), 1342–1351 (2007)MathSciNetCrossRefGoogle Scholar
  58. [20.58]
    M.O. Efe: Fractional fuzzy adaptive sliding-mode control of a 2-DOF direct-drive robot arm, IEEE Trans. Syst. Man Cybern. B 38(6), 1561–1570 (2008)CrossRefGoogle Scholar
  59. [20.59]
    C.-S. Chen: Dynamic structure neural-fuzzy networks for robust adaptive control of robot manipulators, IEEE Trans. Ind. Electron. 55(9), 3402–3414 (2008)CrossRefGoogle Scholar
  60. [20.60]
    R.-J. Wai, P.-C. Chen: Robust neural-fuzzy-network control for robot manipulator including actuator dynamics, IEEE Trans. Ind. Electron. 53(4), 1328–1349 (2006)CrossRefGoogle Scholar
  61. [20.61]
    R.-J. Wai, Z.-W. Yang: Adaptive fuzzy neural network control design via a T-S fuzzy model for a robot manipulator including actuator dynamics, IEEE Trans. Syst. Man Cybern. B 38(5), 1326–1346 (2008)CrossRefGoogle Scholar
  62. [20.62]
    A. Chatterjee, R. Chatterjee, F. Matsuno, T. Endo: Augmented stable fuzzy control for flexible robotic arm using LMI approach and neuro-fuzzy state space modeling, IEEE Trans. Ind. Electron. 55(3), 1256–1270 (2008)CrossRefGoogle Scholar
  63. [20.63]
    F.J. Marín, J. Casillas, M. Mucientes, A.A. Transeth, S.A. Fjerdingen, I. Schjølberg: Learning intelligent controllers for path-following skills on snake-like robots, LNAI. Intell. Robot. Appl. Proc. 4th Int. Conf., II ICIRA (2011), 525–535 (2011)Google Scholar
  64. [20.64]
    Z. Bingül, O. Karahan: A fuzzy logic controller tuned with PSO for 2 DOF robot trajectory control, Expert Syst. Appl. 38(1), 1017–1031 (2011)CrossRefGoogle Scholar
  65. [20.65]
    O. Castillo, R. Martínez-Marroquín, P. Melin, F. Valdez, J. Soria: Comparative study of bio-inspired algorithms applied to the optimization of type-1 and type-2 fuzzy controllers for an autonomous mobile robot, Inf. Sci. 192, 19–38 (2012)CrossRefGoogle Scholar
  66. [20.66]
    M. Biglarbegian, W.W. Melek, J.M. Mendel: Design of novel interval type-2 fuzzy controllers for modular and reconfigurable robots: Theory and experiments, IEEE Trans. Ind. Electron. 58(4), 1371–1384 (2011)CrossRefGoogle Scholar
  67. [20.67]
    O. Linda, M. Manic: Uncertainty-robust design of interval type-2 fuzzy logic controller for delta parallel robot, IEEE Trans. Ind. Inf. 7(4), 661–670 (2011)CrossRefGoogle Scholar
  68. [20.68]
    T.S. Li, S.-J. Chang, W. Tong: Fuzzy target tracking control of autonomous mobile robots by using infrared sensors, IEEE Trans. Fuzzy Syst. 12(4), 491–501 (2004)CrossRefGoogle Scholar
  69. [20.69]
    M. Mucientes, A. Bugarín: People detection with quantified fuzzy temporal rules, Proc. IEEE Int. Conf. Fuzzy Syst. (2007) pp. 1149–1154Google Scholar
  70. [20.70]
    M. Mucientes, A. Bugarín: People detection through quantified fuzzy temporal rules, Pattern Recognit. 43(4), 1441–1453 (2010)zbMATHCrossRefGoogle Scholar
  71. [20.71]
    M. Mucientes, J. Alcalá-Fdez, R. Alcalá, J. Casillas: A case study for learning behaviors in mobile robotics by evolutionary fuzzy systems, Expert Syst. Appl. 37, 1471–1493 (2010)zbMATHCrossRefGoogle Scholar
  72. [20.72]
    P. Carinena, C.V. Regueiro, A. Otero, A.J. Bugarin, S. Barro: Landmark detection in mobile robotics using fuzzy temporal rules, IEEE Trans. Fuzzy Syst. 12(4), 423–435 (2004)CrossRefGoogle Scholar
  73. [20.73]
    R.M. Muñoz-Salinas, E. Aguirre, M. García-Silvente, A. González: A fuzzy system for visual detection of interest in human-robot interaction, Proc. 2nd Int. Conf. Mach. Intell. (ACIDCA-ICMI2005) (2005) pp. 574–581Google Scholar
  74. [20.74]
    J. Figueroa, J. Posada, J. Soriano, M. Melgarejo, S. Rojas: A type-2 fuzzy controller for tracking mobile objects in the context of robotic soccer games, Proc. 14th IEEE Int. Conf. Fuzzy Syst. FUZZ '05 (2005) pp. 359–364Google Scholar
  75. [20.75]
    X. Yang, M. Moallem, R.V. Patel: A layered goal-oriented fuzzy motion planning strategy for mobile robot navigation, IEEE Trans. Syst. Man Cybern. B 35(6), 1214–1224 (2005)CrossRefGoogle Scholar
  76. [20.76]
    B. Innocenti, B. López, J. Salvi: A multi-agent architecture with cooperative fuzzy control for a mobile robot, Robot. Auton. Syst. 55(12), 881–891 (2007)CrossRefGoogle Scholar
  77. [20.77]
    M.A. Garcia, O. Montiel, O. Castillo, R. Sepúlveda, P. Melin: Path planning for autonomous mobile robot navigation with ant colony optimization and fuzzy cost function evaluation, Appl. Soft Comput. 9(3), 1102–1110 (2009)CrossRefGoogle Scholar
  78. [20.78]
    J.-H. Kim, Y.-H. Kim, S.-H. Choi, I.-W. Park: Evolutionary multi-objective optimization in robot soccer system for education, IEEE Comput. Intell. Mag. 4(1), 31–41 (2009)MathSciNetCrossRefGoogle Scholar
  79. [20.79]
    P. Vadakkepat, O.C. Miin, X. Peng, T.-H. Lee: Fuzzy behavior-based control of mobile robots, IEEE Trans. Fuzzy Syst. 12(4), 559–565 (2004)zbMATHCrossRefGoogle Scholar
  80. [20.80]
    P. Vadakkepat, X. Peng, B.K. Quek, T.H. Lee: Evolution of fuzzy behaviors for multi-robotic system, Robot. Auton. Syst. 55(2), 146–161 (2007)CrossRefGoogle Scholar
  81. [20.81]
    A. Chatterjee, F. Matsuno: A neuro-fuzzy assisted extended Kalman filter-based approach for simultaneous localization and mapping (SLAM) problems, IEEE Trans. Fuzzy Syst. 15(5), 984–997 (2007)CrossRefGoogle Scholar
  82. [20.82]
    H.-H. Lin, C.-C. Tsai, J.-C. Hsu: Ultrasonic localization and pose tracking of an autonomous mobile robot via fuzzy adaptive extended information filtering, IEEE Trans. Instrum. Meas. 57(9), 2024–2034 (2008)CrossRefGoogle Scholar
  83. [20.83]
    M. Begum, G.K.I. Mann, R.G. Gosine: Integrated fuzzy logic and genetic algorithmic approach for simultaneous localization and mapping of mobile robots, Appl. Soft Comput. 8(1), 150–165 (2008)CrossRefGoogle Scholar
  84. [20.84]
    X. Cui, T. Hardin, R.K. Ragade, A.S. Elmaghraby: A swarm-based fuzzy logic control mobile sensor network for hazardous contaminants localization, Proc. IEEE Int. Conf. Mob. Ad-hoc Sens. Syst. (2004) pp. 194–203Google Scholar
  85. [20.85]
    D.H.V. Sincák: Multi–robot control system for pursuit–evasion problem, J. Electr. Eng. 60(3), 143–148 (2009)Google Scholar
  86. [20.86]
    I. Harmati, K. Skrzypczyk: Robot team coordination for target tracking using fuzzy logic controller in game theoretic framework, Robot. Auton. Syst. 57(1), 75–86 (2009)CrossRefGoogle Scholar
  87. [20.87]
    C. Zhou, Q. Meng: Dynamic balance of a biped robot using fuzzy reinforcement learning agents, Fuzzy Sets Syst. 134(1), 169–187 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  88. [20.88]
    R.K. Jha, B. Singh, D.K. Pratihar: On-line stable gait generation of a two-legged robot using a genetic–fuzzy system, Robot. Auton. Syst. 53(1), 15–35 (2005)CrossRefGoogle Scholar
  89. [20.89]
    J.G. Nichol, S.P.N. Singh, K.J. Waldron, L.R. Palmer, D.E. Orin: System design of a quadrupedal galloping machine, Int. J. Robot. Res. 23(10/11), 1013–1027 (2004)CrossRefGoogle Scholar
  90. [20.90]
    P.M. Aubin, E. Whittaker, W.R. Ledoux: A robotic cadaveric gait simulator with fuzzy logic vertical ground reaction force control, IEEE Trans. Robot. 28(1), 246–255 (2012)CrossRefGoogle Scholar
  91. [20.91]
    Z. Liu, Y. Zhang, Y. Wang: A type-2 fuzzy switching control system for biped robots, IEEE Trans. Syst. Man Cybern. C 37(6), 1202–1213 (2007)CrossRefGoogle Scholar
  92. [20.92]
    R.K. Barai, K. Nonami: Optimal two-degree-of-freedom fuzzy control for locomotion control of a hydraulically actuated hexapod robot, Inf. Sci. 177(8), 1892–1915 (2007)CrossRefGoogle Scholar
  93. [20.93]
    K. Kiguchi, T. Tanaka, K. Watanabe, T. Fukuda: Exoskeleton for human upper-limb motion support, Proc. IEEE Int. Conf. Robot. Autom. (ICRA) '03, Vol. 2 (2003) pp. 2206–2211Google Scholar
  94. [20.94]
    K. Kiguchi, T. Tanaka, T. Fukuda: Neuro-fuzzy control of a robotic exoskeleton with EMG signals, IEEE Trans. Fuzzy Syst. 12(4), 481–490 (2004)CrossRefGoogle Scholar
  95. [20.95]
    M.-S. Ju, C.-C.K. Lin, D.-H. Lin, I.-S. Hwang, S.-M. Chen: A rehabilitation robot with force-position hybrid fuzzy controller: Hybrid fuzzy control of rehabilitation robot, IEEE Trans. Neural Syst. Rehabil. Eng. 13(3), 349–358 (2005)CrossRefGoogle Scholar
  96. [20.96]
    M.-K. Chang, T.-H. Yuan: Experimental implementations of adaptive self-organizing fuzzy sliding mode control to a 3-DOF rehabilitation robot, Int. J. Innov. Comput. Inf. Control 5(10), 3391–3404 (2009)Google Scholar
  97. [20.97]
    M.-K. Chang: An adaptive self-organizing fuzzy sliding mode controller for a 2-DOF rehabilitation robot actuated by pneumatic muscle actuators, Control Eng. Pract. 18(1), 13–22 (2010)CrossRefGoogle Scholar
  98. [20.98]
    H. Mobahi, S. Ansari: Fuzzy perception, emotion and expression for interactive robots, Proc. IEEE Int. Conf. Syst., Man Cybern., Vol. 4 (2003) pp. 3918–3923Google Scholar
  99. [20.99]
    N. Esau, E. Wetzel, L. Kleinjohann, B. Kleinjohann: Real-time facial expression recognition using a fuzzy emotion model, Proc. IEEE Int. Conf. Fuzzy Syst., FUZZ-IEEE (2007) pp. 1–6Google Scholar
  100. [20.100]
    D. Kulic, E. Croft: Anxiety detection during human-robot interaction, Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS) (2005) pp. 616–621Google Scholar
  101. [20.101]
    D. Kulic, E.A. Croft: Affective state estimation for human–robot interaction, IEEE Trans. Robot. 23(5), 991–1000 (2007)CrossRefGoogle Scholar
  102. [20.102]
    Z. Liu, H.-X. Li: A probabilistic fuzzy logic system for modeling and control, IEEE Trans. Fuzzy Syst. 13(6), 848–859 (2005)CrossRefGoogle Scholar
  103. [20.103]
    H. Liu: A fuzzy qualitative framework for connecting robot qualitative and quantitative representations, IEEE Trans. Fuzzy Syst. 16(6), 1522–1530 (2008)CrossRefGoogle Scholar
  104. [20.104]
    H. Liu, D.J. Brown, G.M. Coghill: Fuzzy qualitative robot kinematics, IEEE Trans. Fuzzy Syst. 16(3), 808–822 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Ismael Rodríguez Fdez
    • 1
    Email author
  • Manuel Mucientes
    • 1
  • Alberto Bugarín Diz
    • 1
  1. 1.Research Centre for Information TechnologiesUniversity of Santiago de CompostelaSantiago de CompostelaSpain

Personalised recommendations