A Calculus of Self-stabilising Computational Fields

  • Mirko Viroli
  • Ferruccio Damiani
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8459)


Computational fields are spatially distributed data structures created by diffusion/aggregation processes, designed to adapt their shape to the topology of the underlying (mobile) network and to the events occurring in it: they have been proposed in a thread of recent works addressing self-organisation mechanisms for system coordination in scenarios including pervasive computing, sensor networks, and mobile robots. A key challenge for these systems is to assure behavioural correctness, namely, correspondence of micro-level specification (computational field specification) with macro-level behaviour (resulting global spatial pattern). Accordingly, in this paper we investigate the propagation process of computational fields, especially when composed one another to achieve complex spatial structures. We present a tiny, expressive, and type-sound calculus of computational fields, enjoying self-stabilisation, i.e., the ability of computational fields to react to changes in the environment finding a new stable state in finite time.


Multiagent System Operational Semantic Computational Field Progression Function Spatial Computing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bachrach, J., Beal, J., McLurkin, J.: Composable continuous space programs for robotic swarms. Neural Computing and Applications 19(6), 825–847 (2010)CrossRefGoogle Scholar
  2. 2.
    Beal, J.: A basis set of operators for space-time computations. In: Spatial Computing Workshop (2010),
  3. 3.
    Beal, J., Bachrach, J.: Infrastructure for engineered emergence in sensor/actuator networks. IEEE Intelligent Systems 21, 10–19 (2006)CrossRefGoogle Scholar
  4. 4.
    Beal, J., Bachrach, J., Vickery, D., Tobenkin, M.: Fast self-healing gradients. In: Proceedings of ACM SAC 2008, pp. 1969–1975. ACM (2008)Google Scholar
  5. 5.
    Beal, J., Dulman, S., Usbeck, K., Viroli, M., Correll, N.: Organizing the aggregate: Languages for spatial computing. In: Mernik, M. (ed.) Formal and Practical Aspects of Domain-Specific Languages: Recent Developments, ch. 16, pp. 436–501. IGI Global (2013), A longer version available at,
  6. 6.
    Claes, R., Holvoet, T., Weyns, D.: A decentralized approach for anticipatory vehicle routing using delegate multiagent systems. IEEE Transactions on Intelligent Transportation Systems 12(2), 364–373 (2011)CrossRefGoogle Scholar
  7. 7.
    Dolev, S.: Self-Stabilization. MIT Press (2000)Google Scholar
  8. 8.
    Fernandez-Marquez, J.L., Serugendo, G.D.M., Montagna, S., Viroli, M., Arcos, J.L.: Description and composition of bio-inspired design patterns: a complete overview. Natural Computing 12(1), 43–67 (2013)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Giavitto, J.-L., Michel, O., Spicher, A.: Spatial organization of the chemical paradigm and the specification of autonomic systems. In: Wirsing, M., Banâtre, J.-P., Hölzl, M., Rauschmayer, A. (eds.) Software Intensive Systems. LNCS, vol. 5380, pp. 235–254. Springer, Heidelberg (2008)Google Scholar
  10. 10.
    Igarashi, A., Pierce, B.C., Wadler, P.: Featherweight Java: A minimal core calculus for Java and GJ. ACM Transactions on Programming Languages and Systems 23(3) (2001)Google Scholar
  11. 11.
    MacLennan, B.: Field computation: A theoretical framework for massively parallel analog computation, parts i-iv. Technical Report Department of Computer Science Technical Report CS-90-100, University of Tennessee, Knoxville (February 1990)Google Scholar
  12. 12.
    Mamei, M., Zambonelli, F.: Programming pervasive and mobile computing applications: The tota approach. ACM Trans. on Software Engineering Methodologies 18(4), 1–56 (2009)CrossRefGoogle Scholar
  13. 13.
    MIT Proto. software available at, (retrieved January 1, 2012)
  14. 14.
    Montagna, S., Pianini, D., Viroli, M.: Gradient-based self-organisation patterns of anticipative adaptation. In: Proceedings of SASO 2012, pp. 169–174. IEEE (September 2012)Google Scholar
  15. 15.
    Montagna, S., Viroli, M., Fernandez-Marquez, J.L., Di Marzo Serugendo, G., Zambonelli, F.: Injecting self-organisation into pervasive service ecosystems. In: Mobile Networks and Applications, pp. 1–15 (September 2012) (online first)Google Scholar
  16. 16.
    Omicini, A., Viroli, M.: Coordination models and languages: From parallel computing to self-organisation. The Knowledge Engineering Review 26(1), 53–59 (2011)CrossRefGoogle Scholar
  17. 17.
    Tokoro, M.: Computational field model: toward a new computing model/methodology for open distributed environment. In: Proceedings of the Second IEEE Workshop on Future Trends of Distributed Computing Systems, 1990, pp. 501–506 (1990)Google Scholar
  18. 18.
    Viroli, M.: Engineering confluent computational fields: from functions to rewrite rules. In: Spatial Computing Workshop (SCW 2013), AAMAS 2013 (May 2013)Google Scholar
  19. 19.
    Viroli, M., Beal, J., Usbeck, K.: Operational semantics of Proto. Science of Computer Programming 78(6), 633–656 (2013)CrossRefGoogle Scholar
  20. 20.
    Viroli, M., Damiani, F., Beal, J.: A calculus of computational fields. In: Canal, C., Villari, M. (eds.) ESOCC 2013. CCIS, vol. 393, pp. 114–128. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  21. 21.
    Viroli, M., Pianini, D., Beal, J.: Linda in space-time: an adaptive coordination model for mobile ad-hoc environments. In: Sirjani, M. (ed.) COORDINATION 2012. LNCS, vol. 7274, pp. 212–229. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  22. 22.
    Weyns, D., Boucké, N., Holvoet, T.: A field-based versus a protocol-based approach for adaptive task assignment. Autonomous Agents and Multi-Agent Systems 17(2), 288–319 (2008)CrossRefGoogle Scholar
  23. 23.
    Whitehouse, K., Sharp, C., Brewer, E., Culler, D.: Hood: a neighborhood abstraction for sensor networks. In: Proceedings of the 2nd International Conference on Mobile Systems, Applications, and Services. ACM Press (2004)Google Scholar
  24. 24.
    Zambonelli, F., Castelli, G., Ferrari, L., Mamei, M., Rosi, A., Serugendo, G.D.M., Risoldi, M., Tchao, A.-E., Dobson, S., Stevenson, G., Ye, J., Nardini, E., Omicini, A., Montagna, S., Viroli, M., Ferscha, A., Maschek, S., Wally, B.: Self-aware pervasive service ecosystems. Procedia CS 7, 197–199 (2011)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2014

Authors and Affiliations

  1. 1.University of BolognaBolognaItaly
  2. 2.University of TorinoTorinoItaly

Personalised recommendations