Advertisement

Scalable and Accurate Causality Tracking for Eventually Consistent Stores

  • Paulo Sérgio Almeida
  • Carlos Baquero
  • Ricardo Gonçalves
  • Nuno Preguiça
  • Victor Fonte
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8460)

Abstract

In cloud computing environments, data storage systems often rely on optimistic replication to provide good performance and availability even in the presence of failures or network partitions. In this scenario, it is important to be able to accurately and efficiently identify updates executed concurrently. Current approaches to causality tracking in optimistic replication have problems with concurrent updates: they either (1) do not scale, as they require replicas to maintain information that grows linearly with the number of writes or unique clients; (2) lose information about causality, either by removing entries from client-id based version vectors or using server-id based version vectors, which cause false conflicts. We propose a new logical clock mechanism and a logical clock framework that together support a traditional key-value store API, while capturing causality in an accurate and scalable way, avoiding false conflicts. It maintains concise information per data replica, only linear on the number of replica servers, and allows data replicas to be compared and merged linear with the number of replica servers and versions.

Keywords

Version Vector Server Node Causal History Causal Information Replica Server 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Almeida, P.S., Baquero, C., Fonte, V.: Interval tree clocks. In: Baker, T.P., Bui, A., Tixeuil, S. (eds.) OPODIS 2008. LNCS, vol. 5401, pp. 259–274. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Birman, K.P., Joseph, T.A.: Reliable communication in the presence of failures. ACM Trans. Comput. Syst. 5(1), 47–76 (1987)CrossRefGoogle Scholar
  3. 3.
    Brewer, E.A.: Towards robust distributed systems (abstract). In: Proceedings of the Nineteenth Annual ACM Symposium on Principles of Distributed Computing, PODC 2000, p. 7. ACM, New York (2000)CrossRefGoogle Scholar
  4. 4.
    Charron-Bost, B.: Concerning the size of logical clocks in distributed systems. Information Processing Letters 39, 11–16 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin, A., Sivasubramanian, S., Vosshall, P., Vogels, W.: Dynamo: amazon’s highly available key-value store. In: Proceedings of Twenty-First ACM SIGOPS SOSP, pp. 205–220. ACM (2007)Google Scholar
  6. 6.
    Gilbert, S., Lynch, N.: Brewer’s conjecture and the feasibility of consistent available partition-tolerant web services. ACM SIGACT News, 2002 (2002)Google Scholar
  7. 7.
    Golding, R.A.: A weak-consistency architecture for distributed information services. Computing Systems 5(4), 379–405 (1992)Google Scholar
  8. 8.
    Kistler, J.J., Satyanarayanan, M.: Disconnected operation in the Coda file system. In: Thirteenth ACM Symposium on Operating Systems Principles, vol. 25, pp. 213–225. Asilomar Conference Center, Pacific Grove (1991)CrossRefGoogle Scholar
  9. 9.
    Klophaus, R.: Riak core: building distributed applications without shared state. In: ACM SIGPLAN Commercial Users of Functional Programming, CUFP 2010, p. 14:1. ACM, New York (2010), http://doi.acm.org/10.1145/1900160.1900176 Google Scholar
  10. 10.
    Lakshman, A., Malik, P.: Cassandra: a decentralized structured storage system. SIGOPS Oper. Syst. Rev. 44, 35–40 (2010)CrossRefGoogle Scholar
  11. 11.
    Lamport, L.: Time, clocks and the ordering of events in a distributed system. Communications of the ACM 21(7), 558–565 (1978)CrossRefzbMATHGoogle Scholar
  12. 12.
    Mahajan, P., Setty, S., Lee, S., Clement, A., Alvisi, L., Dahlin, M., Walfish, M.: Depot: Cloud storage with minimal trust. In: OSDI 2010 (October 2010)Google Scholar
  13. 13.
    Malkhi, D., Terry, D.: Concise version vectors in winFS. In: Fraigniaud, P. (ed.) DISC 2005. LNCS, vol. 3724, pp. 339–353. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Parker, D.S., Popek, G., Rudisin, G., Stoughton, A., Walker, B., Walton, E., Chow, J., Edwards, D., Kiser, S., Kline, C.: Detection of mutual inconsistency in distributed systems. Transactions on Software Engineering 9(3), 240–246 (1983)CrossRefGoogle Scholar
  15. 15.
    Petersen, K., Spreitzer, M.J., Terry, D.B., Theimer, M.M., Demers, A.J.: Flexible update propagation for weakly consistent replication. In: Sixteen ACM Symposium on Operating Systems Principles, Saint Malo, France (October 1997)Google Scholar
  16. 16.
    Preguiça, N., Baquero, C., Almeida, P.S., Fonte, V., Gonçalves, R.: Brief announcement: Efficient causality tracking in distributed storage systems with dotted version vectors. In: Proceedings of the 2012 ACM Symposium on PODC, pp. 335–336. ACM (2012)Google Scholar
  17. 17.
    Ramasubramanian, V., Rodeheffer, T.L., Terry, D.B., Walraed-Sullivan, M., Wobber, T., Marshall, C.C., Vahdat, A.: Cimbiosys: a platform for content-based partial replication. In: Proceedings of the 6th USENIX Symposium on NSDI, Berkeley, CA, USA, pp. 261–276 (2009)Google Scholar
  18. 18.
    Ratner, D., Reiher, P.L., Popek, G.J.: Roam: A scalable replication system for mobility. MONET 9(5), 537–544 (2004)Google Scholar
  19. 19.
    Raynal, M., Singhal, M.: Logical time: Capturing causality in distributed systems. IEEE Computer 30, 49–56 (1996)CrossRefGoogle Scholar
  20. 20.
    Schwarz, R., Mattern, F.: Detecting causal relationships in distributed computations: In search of the holy grail. Distributed Computing 3(7), 149–174 (1994)CrossRefzbMATHGoogle Scholar
  21. 21.
    Torres-Rojas, F.J., Ahamad, M.: Plausible clocks: constant size logical clocks for distributed systems. Distributed Computing 12(4), 179–196 (1999)CrossRefGoogle Scholar
  22. 22.
    Wang, W., Amza, C.: On optimal concurrency control for optimistic replication. In: Proc. ICDCS, pp. 317–326 (2009)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2014

Authors and Affiliations

  • Paulo Sérgio Almeida
    • 1
  • Carlos Baquero
    • 1
  • Ricardo Gonçalves
    • 1
  • Nuno Preguiça
    • 2
  • Victor Fonte
    • 1
  1. 1.HASLabINESC Tec & Universidade do MinhoBragaPortugal
  2. 2.CITI/DI, FCTUniversidade Nova de LisboaLisbonPortugal

Personalised recommendations