Multi-agent Systems Design and Prototyping with Bigraphical Reactive Systems

  • Alessio Mansutti
  • Marino Miculan
  • Marco Peressotti
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8460)


Several frameworks and methodologies have been proposed to ease the design of Multi Agent Systems (MAS), but the vast majority of them is tightly tied to specific implementation platforms. In this paper, we outline a methodology for MAS design and prototyping in the more abstract framework of Bigraphical Reactive Systems (BRS). In our approach, components and elements of the application domain are modelled as bigraphs, and their dynamics as graph rewriting rules. Desiderata can be encoded by means of type systems or logical formulae. Then, the BDI agents (i.e., their beliefs, desires and intentions) are identified and extracted from the BRS. This yield a prototype which can be run as distributed bigraphical system, evolving by means of distributed transactional rewritings triggered by cooperating agents depending on their internal intentions and beliefs.

This methodology allows the designer to benefit from the results and tools from the theory of BRS, especially in the requirement analysis and validation phases. Among other results, we mention behavioural equivalences, temporal/spatial logics, visual tools for editing, for simulation and for model checking, etc. Moreover, bigraphs can be naturally composed, thus allowing for modular design of MAS.


Model Check Link Graph Computational Tree Logic Agent Belief Place Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bacci, G., Grohmann, D.: On the decidability of bigraphical sorting. In: Haveraaen, M., Lenisa, M., Power, J., Seisenberger, M. (eds.) Proc. CALCO Young Researchers Workshop, number 05/2010 in Technical Report, pp. 1–14 (2009)Google Scholar
  2. 2.
    Bacci, G., Grohmann, D., Miculan, M.: Bigraphical models for protein and membrane interactions. In: Ciobanu, G. (ed.) Proc. MeCBIC. Electronic Proceedings in Theoretical Computer Science, vol. 11, pp. 3–18 (2009)Google Scholar
  3. 3.
    Bernon, C., Cossentino, M., Gleizes, M.P., Turci, P., Zambonelli, F.: A study of some multi-agent meta-models. In: Odell, J., Giorgini, P., Müller, J.P. (eds.) AOSE 2004. LNCS, vol. 3382, pp. 62–77. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Birkedal, L., Debois, S., Elsborg, E., Hildebrandt, T., Niss, H.: Bigraphical models of context-aware systems. In: Aceto, L., Ingólfsdóttir, A. (eds.) FOSSACS 2006. LNCS, vol. 3921, pp. 187–201. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Conforti, G., Macedonio, D., Sassone, V.: Spatial logics for bigraphs. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 766–778. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    De Nicola, R., Loreti, M., Pugliese, R., Tiezzi, F.: A formal approach to autonomic systems programming: the SCEL language. ACM Transactions on Autonomous and Adaptive Systems, 1–29 (2014)Google Scholar
  7. 7.
    Elsborg, E., Hildebrandt, T.T., Sangiorgi, D.: Type systems for bigraphs. In: Kaklamanis, C., Nielson, F. (eds.) TGC 2008. LNCS, vol. 5474, pp. 126–140. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Faithfull, A.J., Perrone, G., Hildebrandt, T.T.: BigRed: A development environment for bigraphs. In: ECEASST, vol. 61 (2013)Google Scholar
  9. 9.
    Hildebrandt, T., Niss, H., Olsen, M.: Formalising business process execution with bigraphs and reactive XML. In: Ciancarini, P., Wiklicky, H. (eds.) COORDINATION 2006. LNCS, vol. 4038, pp. 113–129. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Krivine, J., Milner, R., Troina, A.: Stochastic bigraphs. In: Proc. 24th MFPS. Electronic Notes in Theoretical Computer Science, vol. 218, pp. 73–96 (2008)Google Scholar
  11. 11.
    Ma, J., Broda, K., Goebel, R., Hosobe, H., Russo, A., Satoh, K.: Speculative abductive reasoning for hierarchical agent systems. In: Dix, J., Leite, J., Governatori, G., Jamroga, W. (eds.) CLIMA XI. LNCS, vol. 6245, pp. 49–64. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Milner, R.: The Space and Motion of Communicating Agents. Cambridge University Press (2009)Google Scholar
  13. 13.
    Pereira, E., Kirsch, C.M., de Sousa, J.B., Sengupta, R.: BigActors: a model for structure-aware computation. In: Lu, C., Kumar, P.R., Stoleru, R. (eds.) ICCPS, pp. 199–208. ACM (2013)Google Scholar
  14. 14.
    Perrone, G., Debois, S., Hildebrandt, T.T.: Bigraphical refinement. In: Derrick, J., Boiten, E.A., Reeves, S. (eds.) Proc. REFINE. Electronic Proceedings in Theoretical Computer Science, vol. 55, pp. 20–36 (2011)Google Scholar
  15. 15.
    Perrone, G., Debois, S., Hildebrandt, T.T.: A model checker for bigraphs. In: Ossowski, S., Lecca, P. (eds.) Proc. SAC, pp. 1320–1325. ACM (2012)Google Scholar
  16. 16.
    Ribino, P., Cossentino, M., Lodato, C., Lopes, S., Sabatucci, L., Seidita, V.: Ontology and goal model in designing BDI multi-agent systems. In: WOA@AI*IA. CEUR Workshop Proceedings, vol. 1099, pp. 66–72. (2013)Google Scholar
  17. 17.
    Zhang, M., Shi, L., Zhu, L., Wang, Y., Feng, L., Pu, G.: A bigraphical model of WSBPEL. In: Proc. TASE, pp. 117–120. IEEE Computer Society (2008)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2014

Authors and Affiliations

  • Alessio Mansutti
    • 1
  • Marino Miculan
    • 1
  • Marco Peressotti
    • 1
  1. 1.Laboratory of Models and Applications of Distributed Systems, Department of Mathematics and Computer ScienceUniversity of UdineUdineItaly

Personalised recommendations