Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Eichelbaum M (1975). Ein neuentdeckter Defet im Arzneimittelstoffwechsel des Menschen: Die fehlende N-Oxidation des Spartein. Habilitationsschrift, Medizinische Fakultät Rheinischen Friedrich-Wilhelms-Universität, Bonn.Google Scholar
  2. 2.
    Eichelbaum M, Spannbrucker N, Steincke B and Dengler HJ (1979). Defective N-oxidation of sparteine in man: A new pharmacogenetic defect. Eur J Clin Pharmacol. 16, 183–187.PubMedGoogle Scholar
  3. 3.
    Maghoub A, Idle JR, Dring LG, Lancester R and Smith RL (1977). Polymorphic hydroxylation of debrisoquine in man. Lancet II, 584–586.Google Scholar
  4. 4.
    Eichelbaum M, Baur MP, Osikowska-Evers, BO, Tieves G, Zekorn C and Rittner C (1987). Chromosomal assignement of human cytochrome P450 (debrisoquine/sparteine type) to chromosome 22. Br J Clin Pharmac 23, 455–458Google Scholar
  5. 5.
    Skoda RC, Gonzalez FJ, Demierre A and Meyer UA (1988). Two mutant alleles of the human cytochrome P 450 dbl-gene (P450 C2D1) associated with genetically deficient metabolism of debrisoquine and other drugs. Proc Natl Acad Sci. USA 85, 5240–5243PubMedGoogle Scholar
  6. 6.
    Gonzalez FJ, Skoda RC, Kimura S, Umeno M, Zanger UM, Nebert DW, Gelboin HV, Handwick JP and Meyer UA (1988a). Characterization of the common genetic defect in humans deficient in debrisoquin metabolism. Nature 331, 442–446.PubMedGoogle Scholar
  7. 7.
    Kagimoto M, Heim M, Kagimoto K, Zeugin T and Meyer UA (1990). Multiple mutations of the human cytochrome P450IID6 gene (CYP2D6) in poor metabolizers of debrisoquine. Study of the functional significance of individual mutations by expression of chimeric genes. J Biol Chem 265, 17209–17214.PubMedGoogle Scholar
  8. 8.
    Heim M and Meyer UA (1990). Genotyping of poor metabolisers of debrisoquine by allele-specific PCR amplification. Lancet 336, 529–532.PubMedGoogle Scholar
  9. 9.
    Gaedigk A, Blum M, Gaedigk R, Eichelbaum M, and Meyer UA (1991). Deletion of the entire cytochrome P450 CYP2D6 gene as a cause of impaired drug metabolism in poor metabolizers of the debrisoquine/sparteine polymorphism. Am J Human Genet. 48, 943–950.Google Scholar
  10. 10.
    Evans, WE and Relling MV (1990). Xbal 16-plus 9-kilobase DNA restriction fragments identify a mutant allele for debrisoquin hydroxylase: report of a family study. Mol. Pharmac 37, 639–642.Google Scholar
  11. 11.
    Gonzalez FJ, VILbois F, Hardwick JP, McBride OW, Gelboin HV and Meyer UA (1988b). Human debrisoquine 4-hydroxylase (P450IID1): cDNA and deduced amino acid sequence and assignement of the CYP2D locus to chromosome 22. Genomics 2, 174–179.PubMedGoogle Scholar
  12. 12.
    Zanger UM, Vilbois F, Hardwick JP and Meyer UA (1988). Absence of hepatic cytochrome P450-bufl causes genetically deficient debrisoquine hydroxylation in man. Biochemistry 27, 5447–5454.PubMedGoogle Scholar
  13. 13.
    Eichelbaum M and Gross AS (1990). The genetic polymorphism of debrisoquine/sparteine metabolism clinical aspects. Pharmac Ther 46, 377–394.Google Scholar
  14. 14.
    Brosen K and Gram LF (1989). Clinical significance of the sparteine/debrisoquine oxidation polymorphism. Eur. J. Clin. Pharmacol. 36, 537–547.PubMedGoogle Scholar
  15. 1.
    Hollmann, M., O’Shea-Greenfield, A., Rogers, S.W., and Heinemann, S., Nature 342:643–648 (1989).PubMedGoogle Scholar
  16. 2.
    Boulter, J., Hollmann, M., O’Shea-Greenfield, A., Hartley, M., Deneris, E., Maron, C., and Heinemann, S., Science 249:1033–1037 (1990).PubMedGoogle Scholar
  17. 3.
    Bettler, B., Boulter, J., Hermans-Borgmeyer, I., O’Shea-Greenfield, A., Deneris, E., Moll, C, Borgmeyer, U., Hollmann, M., and Heinemann, S., Neuron 5:583–595 (1990).PubMedGoogle Scholar
  18. 4.
    Edgebjerg, J., Bettler, B., Hermans-Borgmeyer, I., and Heinemann, S., Nature in press (1991).Google Scholar
  19. 1).
    Braun et al. 1989 EMBO J. 8, 3617–3625PubMedGoogle Scholar
  20. 2).
    Braun et al. 1989 EMBO J. 8, 701–831PubMedGoogle Scholar
  21. 3).
    Braun et al. 1990 EMBO J. 9, 821–831Google Scholar
  22. 4).
    Sassoon et al. 1989 Nature 341, 303–307PubMedGoogle Scholar
  23. 5).
    Ott et al. 1991 Development 111Google Scholar
  24. 6).
    Bober et al. 1991 J. Cell. Biol. 112Google Scholar
  25. 7).
    Braun et al. 1990 Nature 346, 663–665PubMedGoogle Scholar
  26. 8).
    Murre et al. 1989 Cell 56, 777–783PubMedGoogle Scholar
  27. 9).
    Braun and Arnold 1991 J.Biol.Chem.(in press)Google Scholar
  28. 10).
    Salminen et al. 1991 J. Cell. Biol.(in press)Google Scholar
  29. 11).
    Gerherz et al. 1989 Br. J. Cancer 59, 61–67Google Scholar
  30. 12).
    Braun et al. 1991 Cell (in press)Google Scholar
  31. 1.
    Balmain, A and Brown, K. Adv Cancer Res. 51, 147–182 (1988).PubMedGoogle Scholar
  32. 2.
    Bremner, R and Baimain, A. Cell 61 407–417 (1990).PubMedGoogle Scholar
  33. 3.
    Bailleul, B, Surani, M A, White, S, Barton, S C, Brown, K, Blessing, M, forcano, J and Balmain, A. Cell 62, 697–708 (1990).PubMedGoogle Scholar
  34. Strathmann, M., T. M. Wilkie and M. I. Simon. Diversity of the G-protein family: Sequences from five additional a subunits in the mouse. Proc. Natl. Acad. Sci. USA 86, 7407–7409, 1989.PubMedGoogle Scholar
  35. Strathmann, M., T. M. Wilkie and M. I. Simon. Alternative splicing produces transcripts encoding two forms of the a subunit of GTP-binding protein GO. Proc. Natl. Acad. Sci. USA 87, 6477–6481, 1990.PubMedGoogle Scholar
  36. Strathmann, M. and M. I. Simon. G protein diversity: A distinct class of a subunits is present in vertebrates and invertebrates. Proc. Natl. Acad. Sci. USA 87, 9113–9117, 1990.PubMedGoogle Scholar
  37. Strathmann, M., B. A. Hamilton, C. A. Mayeda, M. I. Simon, E. M. Meyerowitz and M. J. Palazzolo. Transposon-facilitated DNA sequencing. Proc. Natl. Acad. Sci. USA, 88, 1247–1250 (1991).PubMedGoogle Scholar
  38. Simon, M. I., M. P. Strathmann and N. Gautam. Diversity of G proteins in signal transduction. Science 252, 802–808 (1991).PubMedGoogle Scholar
  39. Amatruda, T. T., m, D. A. Steele, V. Z. Slepak and M. I. Simon. Gα16, a novel G-protein alpha subunit specifically expressed in hematopoietic cells. Proc. Natl. Acad. Sci. USA, in press.Google Scholar
  40. Strathmann, M. P. and M. I. Simon. Gα12 and Gα13 define a fourth class of G protein alpha subunits. Proc. Natl. Acad. Sci. USA, in press.Google Scholar
  41. 1.
    Bourne, H.R., Sanders, D.A. and McCormick, F. (1990) Nature 348, 125–132.PubMedGoogle Scholar
  42. 2.
    Bourne, H.R., Sanders, D.A. and McCormick, F. (1991) Nature 349, 117–127.PubMedGoogle Scholar
  43. 3.
    Hall, A. (1990) Science 249, 635–640.PubMedGoogle Scholar
  44. 4.
    Walworth, N.C., Goud, B., Kabcenell, A.K. and Novick, P.J. (1989) EMBO J. 8, 1685–1693.PubMedGoogle Scholar
  45. 5.
    Becker, J., Tan, T.J., Trepte, H.-H. and Gallwitz, D. (1991) EMBO J. 10, 785–792.PubMedGoogle Scholar
  46. 6.
    Chavrier, P., Parton, R.G., Hauri, H.P., Simons, K. and Zerial, M. (1990) Cell 62, 317–329.PubMedGoogle Scholar
  47. 1.
    Schatzmann, HJ. The calcium pump of erythrocytes and other animal cells. Membrane Transport of Calcium. (Ed. E. Carafoli), Acad. Press, London, p. 41–108, 1982.Google Scholar
  48. 2.
    Carafoli, E. Calcium Pump of the Plasma Membrane, Physiol. Rev., 71, p.129–153, 1991.PubMedGoogle Scholar
  49. 3.
    Niggli, v., Penniston, J.T. and Carafoli, E. Purification of the (Ca2+ + Mg2+)-ATPase from human erythrocyte membranes using a calmodulin affinity column. J. Biol. Chem. 254, p. 9955–9958, 1979.PubMedGoogle Scholar
  50. 4.
    Verma, A.K., A.G. Filoteo, D.R. Stanford, E.D. Wieben, J.T. Penniston, E.E. Strehler, R. Fischer, R. Heim, G. Vogel, S. Mathews, M.A. Strehler-Page, P. James, T. Vorherr, J. Krebs and E. Carafoli. Complete primary structure of a human plasma membrane Ca2+ pump. J. Biol. Chem. 263: p. 14152–14149, 1988.PubMedGoogle Scholar
  51. 5.
    Shull, G.E. and J. Greeb. Molecular cloning of two isoforms of the plasma membrane Ca2+ transporting ATPase from rat brain. Structural and functional domains exhibit similarity to Na+, K+- and other cation transport ATPases. J. Biol. Chem. 263: p. 8646–8657, 1988.PubMedGoogle Scholar
  52. 6.
    Olson, S., M.G. Wang, E. Carafon, E.E. Strehler and O.W. McBride. Localization of two genes encoding plasma membrane Ca2+-transporting ATPases to human chromosomes 1q25–32 and 12q21–23. Genomics 9: 629–641, 1991.PubMedGoogle Scholar
  53. 7.
    Niggli, V., E.S. Adunyah, J.T. Penniston and E. Carafoli. Purified Ca2+ + Mg2+) ATPase of the erythrocyte membrane: reconstitution and effect of calmodulin and phospholipids. J. Biol. Chem. 256: p. 395–401, 1981.PubMedGoogle Scholar
  54. [1]
    Campbell KP, Leung AT, Sharp AH (1988) Trends Neurosci. 11:425–430PubMedGoogle Scholar
  55. [2]
    Catterall WA (1991) Cell 64:871–874PubMedGoogle Scholar
  56. [3]
    Hofmann F, Nastainczyk W, Röhrkasten A, Schneider T, Sieber M (1987) Trends Pharmacol. Sci. 8:393–398Google Scholar
  57. [4]
    Glossmann H, Striessnig J (1990) Rev. Physiol. Biochem. Pharmacol. 114:1–105PubMedGoogle Scholar
  58. [5]
    Brown AM, Bimbaumer L (1990) Annu. Rev. Physiol. 52:197–213PubMedGoogle Scholar
  59. [6]
    Callewaert G, Hanbauer I, Morad M (1989) Science 243:663–666PubMedGoogle Scholar
  60. [7]
    Knaus HG, Scheffauer F, Romanin C, Schindler HG, Glossmann H (1990) J. Biol. Chem. 265:11156–11166PubMedGoogle Scholar
  61. [8]
    Mintz IM, Venema VJ, Adams ME, Bean BP (1990) Neurosci. Abstr. 16:956Google Scholar
  62. [9]
    Nunoki K, Florio V, Catterall WA (1989) Proc. Naü. Acad. Sci. (USA) 86:6816–6820Google Scholar
  63. [10]
    De Jongh KS, Merrick DK, Catterall WA (1989) Proc. Naü. Acad. Sci. (USA) 86: 8585–8589Google Scholar
  64. [11]
    Lai Y, Seagar MJ, Takahashi M, Catterall WA (1990) J. Biol. Chem. 265:20839–20848PubMedGoogle Scholar
  65. [12]
    Röhrkasten A, Meyer HE, Nastainczyk W, Sieber M, Hofmann F (1988) J. Biol. Chem. 263:15325–15329PubMedGoogle Scholar
  66. [13]
    Staudinger R, Knaus HG, Glossmann H (1991) J. Biol. Chem.: in pressGoogle Scholar
  67. [14]
    Striessnig J, Glossmann H, Catterall WA (1990) Proc. Natl. Acad. Sci. (USA) 87: 9108–9112PubMedGoogle Scholar
  68. [15]
    Guy HR, Conti F (1990) Trends Neurosci. 13:201–206PubMedGoogle Scholar
  69. [16]
    Miller C (1991) Science 252:1092–1096PubMedGoogle Scholar
  70. 1.
    Beavo, J. A. and D. H. Reifsnyder. (1990). Primary sequence of cyclic nucleotide phosphodiesterase isozymes and the design of selective inhibitors. Trends Pharmacol Sci. 11(4): 150–5.PubMedGoogle Scholar
  71. 2.
    Le Trong, H, Beier, N, Sonnenburg, W.K., Stroop, S.D., Walsh, K.A., Beavo, J.A. and Charbonneau, H. (1990) Amino acid sequence of the cyclic GMP simulated cyclic nucleotide phosphodiesterase from bovine heart. Biochemistry 29:10280–10288.PubMedGoogle Scholar
  72. 3.
    Stroop, S.D., Charbonneau, H., and Beavo, J.A. (1989) Direct photolabeling of allosteric and catalytic domains of the cGMP-stimulated cyclic nucleotide phosphodiesterase. J. Biol. Chem. 264:13718–13725.PubMedGoogle Scholar
  73. 4.
    MacFariand, R.T., Zelus, B., and Beavo, J.A. (1991) High concentrations of a cyclic GMP-stimulated PDE mediate ANP-induced decreases in cAMP and steroidogenesis in adrenal glomerulosa cells. J. Biol. Chem. 266:136–142.Google Scholar
  74. 5.
    Murashima, S., Tanaka, T., Hockman, S., and Manganiello, V. C. (1990). Characterization of a particulate cyclic nucleotide phosphodiesterase from bovine brain: purification of a distinct cGMP-stimulated isoenzyme. Biochemistry 29:5285–5292.PubMedGoogle Scholar
  75. 6.
    Sonnenburg, W.K., Mullaney, P.J., and Beavo, J.A. (1991) Molecular cloning of a cyclic GMP-stimulated cyclic nucleotide phosphodiesterase cDNA: identification and distribution of isozyme variants. J. Biol. Chem. 266: Sept/Oct (in press).Google Scholar
  76. 1.
    Moncada S., Palmer R.M.J. and Higgs E.A. (1989). Biochem. Pharmacol., 38: 1709–1715.PubMedGoogle Scholar
  77. 2.
    Palmer R.M.J., Ferrige A.G. and Moncada S. (1987). Nature, 327: 524–526.PubMedGoogle Scholar
  78. 3.
    Palmer R.M.J., Ashton D.S. and Moncada S. (1988). Nature, 333: 664–666.PubMedGoogle Scholar
  79. 4.
    Palmer R.M.J. and Moncada S. (1989). Biochem. Biophys. Res. Commun. 158: 348–352.PubMedGoogle Scholar
  80. 5.
    Busse R. and Mulsch A. (1990). FEBS Lett., 265: 133–136.PubMedGoogle Scholar
  81. 6.
    Furchgott R.F. and Zawadzki J.V. (1980). Nature, 288: 373–376.PubMedGoogle Scholar
  82. 7.
    Schultz K.D., Schultz K. and Schultz G. (1977). Nature, 265: 750–751.PubMedGoogle Scholar
  83. 8.
    Feelisch M. and Noack E.A. (1987). Eur. J. Pharmacol., 139: 19–30.PubMedGoogle Scholar
  84. 9.
    Inoue T., Tomoike H., Hisano K. and Nakamura M. (1988). J. Am. Coll. Cardiol., 11: 187–191.PubMedGoogle Scholar
  85. 10.
    Palmer R.M.J., Rees D.D., Ashton D.S. and Moncada S. (1988). Biochem. Biophys. Res. Commun. 153: 1251–1256.PubMedGoogle Scholar
  86. 11.
    Rees D.D., Palmer R.M.J., Hodson H.F. and Moncada S. (1989). Br. J. Pharmacol., 96: 418–424.PubMedGoogle Scholar
  87. 12.
    Rees D.D., Palmer R.M.J. and Moncada S. (1989). Proc. Natl. Acad. Sci. USA. 86: 3375–3378.PubMedGoogle Scholar
  88. 13.
    Moncada S., Rees D.D., Schulz R. and Palmer R.M.J. (1991). Proc. Natl. Acad. Sci. USA. 88: 2166–2170.PubMedGoogle Scholar
  89. 14.
    Rees D.D., Cellek S., Palmer R.M.J. and Moncada S. (1990). Biochem. Biophys. Res. Commun. 173: 541–547.PubMedGoogle Scholar
  90. 15.
    Radomski M.W., Palmer R.M.J. and Moncada S (1990). Proc. Natl. Acad. Sci. USA., 87: 10043–10047.PubMedGoogle Scholar
  91. 16.
    Busse R. and Mulsch A. (1990). FEBS Lett., 275: 87–90.PubMedGoogle Scholar
  92. 17.
    Knowles R.G., Salter M., Brooks S.L. and Moncada S. (1990). Biochem. Biophys. Res. Commun., 172: 1042–1048.PubMedGoogle Scholar
  93. 18.
    Hibbs J.B. Jr., Taintor R.R., Vavrin Z., Granger D.L., Drapier J-C., Amber I.J. and Lancaster J.R. Jr. (1990). In: Nitric oxide from L-arginine. A bioregulatory system, ed. Moncada S. and Higgs E.A. 189–223. Elsevier.Google Scholar
  94. 19.
    Vallance P. and Moncada S (1991). Lancet, 337: 776–778.PubMedGoogle Scholar
  95. 20.
    Di Rosa M., Radomski M.W., Carnuccio R. and Moncada S. (1990). Biochem. Biophys. Res. Commun., 172: 1246–1252.PubMedGoogle Scholar
  96. 21.
    Radomski M.W., Palmer R.M.J. and Moncada S. (1987). Br. J. Pharmacol., 92: 181–187.PubMedGoogle Scholar
  97. 22.
    Radomski M.W., Palmer R.M.J. and Moncada S. (1987). Biochem. Biophys. Res. Commun., 148: 1482–1489.PubMedGoogle Scholar
  98. 23.
    Radomski M.W., Palmer R.M.J. and Moncada S. (1990). Proc. Natl. Acad. Sci. USA., 87: 5193–5197.PubMedGoogle Scholar
  99. 24.
    Moncada S., Palmer R.M.J. and Higgs E.A. (1991). Pharm. Res., 43: 109–142.Google Scholar
  100. 1).
    Waldmann SA, Murad F (1987) Cyclic GMP synthesis and function. Pharmacol Rev 39: 163–196Google Scholar
  101. 2).
    Tremblay J, Gerzer R, Harnet P (1988) Cyclic GMP in cell function. Adv Second Messenger Phosphoprotein Res 22: 319–383PubMedGoogle Scholar
  102. 3).
    Lincoln TM (1989) Cyclic GMP and mechanisms of vasodilation. Pharmacol Ther 41: 479–502PubMedGoogle Scholar
  103. 4).
    Walter U (1989) Physiological role of cGMP and cGMP-de-pendent protein kinase in the cardiovascular system. Rev Physiol Biochem Pharmacol 113: 41–88PubMedGoogle Scholar
  104. 5).
    Kaupp UB (1991) The cyclic nucleotide-gated channels of vertebrate photpreceptors and olfactory epithelium. Trends in Neuroscience 14: 150–157Google Scholar
  105. 6).
    DiFrancesco D, Tortora P (1991) Direct activation of cardiac pacemaker channels by intracellular cyclic AMP. Nature 351: 145–147PubMedGoogle Scholar
  106. 7).
    Meinecke M, Büchler W, Fischer L, Lohmann SM, Walter U (1990) cAMP-dependent protein kinase: subunit diversity and functional role in gene expression. In: Cellular and molecular biology of myelination (eds. Jeserich G, Althaus HH, Waehneldt TV), NATO ASI Series H, Vol.43, Springer Verlag, Heidelberg, pp 201–215Google Scholar
  107. 8).
    Taylor SS, Buechler JA, Yonemoto W (1990) cAMP-dependent protein kinase: framework for a diverse family of regulator enzymes. Annu Rev Biochem 59: 971–1005.Google Scholar
  108. 9).
    Beavo JA (1988) Multiple isoenzymes of cyclic nucleotide phosphodiesterase. Adv Second Messenger and Phosphoprotein Res 22: 1–38Google Scholar
  109. 10).
    Beavo JA, Reifsnyder DH (1990) Primary sequence of cyclic nucleotide phosphodiesterase isozymes and the design of selective inhibitors. Trends Pharmacol Sci 11: 150–155PubMedGoogle Scholar
  110. 11).
    Mery P-F, Lohmann SM, Walter U, Fischmeister R (1991) Ca++-current is regulated by cGMP-dependent protein kinase in cardiac myocytes. Proc Natl Acad Sci USA 88: 1197–1201PubMedGoogle Scholar
  111. 12).
    Felbel J, Trockur B, Ecker T, Landgraf W, Hofmann F (1988) Regulation of cytosolic calcium by cAMP and cGMP in freshly isolated smooth muscle cells from bovine trachea. J Biol Chem 263: 16764–16771PubMedGoogle Scholar
  112. 13).
    Cornwell TL, Lincoln TM (1989) Regulation of intracellular Ca++ levels in cultured vascular smooth muscle cells: reduction of Ca++ by atriopeptin and 8-Br-cGMP is mediated by cGMP-dependent protein kinase. J Biol Chem 264: 1146–1155PubMedGoogle Scholar
  113. 14).
    Walter U, Nolte C, Geiger J, Schanzenbächer P, Kochsiek K (1991) Inhibition of platelet function by cyclic nucleotides and cyclic nucleotide-dependent protein kinases. In “Antithrombotics: Pathophysiological rationale for pharmacological interventions” (Herman AG, Moncada S, eds.), Kluwer Academic Publishers, In PressGoogle Scholar
  114. 15).
    Haibrügge M, Walter U (1989) Purification of a vasodilator-regulated phosphoprotein from human platelets. Eur J Biochem 185: 41–50Google Scholar
  115. 16).
    Haibrügge M, Friedrich C, Eigenthaler M, Schanzenbächer P, Walter U (1990) Stoichiometric and reversible phosphorylation of a 46 kDa protein in human platelets in response to cGMP- and cAMP-elevating vasodilators. J Biol Chem 265: 3088–3093Google Scholar
  116. 17).
    Nolte C, Eigenthaler M, Schanzenbächer P, Walter U (1991) Endothelial cell-dependent phosphorylation of a platelet protein mediated by cAMP- and cGMP-elevating factors. J Biol Chem 266: In pressGoogle Scholar
  117. 1.
    Wagner D, Metzger R, Paul M, Ludwig G, Suzuki F, Takahashi S, Murakami K, Ganten D. Androgen dependence and tissue specificity of renin messenger RNA expression in mice. J Hypertens 1990;8:45–52PubMedGoogle Scholar
  118. 2.
    Mullins JJ, Peters J, Ganten D. Fulminant hypertension in transgenic rats harbouring the mouse Ren-2 gene. Nature 1990;344:541–544PubMedGoogle Scholar
  119. 3.
    Undpaintner K, Takahashi S, Ganten D. Structural alterations of the renin gene in stroke-prone spontaneously hypertensive rats: examination of genotype-phenotype correlations. J Hypertens 1990;8:763–773Google Scholar
  120. 4.
    Schelling P, Fischer H, Ganten D. Angiotensin and cell growth: a link to cardiovascular hypertrophy? J Hypertens 1991;9:3–15PubMedGoogle Scholar
  121. 5.
    Undpaintner K, Jin M, Niedermeier N, Wilhelm MJ, Ganten D. Cardiac angio-tensinogen and its local activation in the isolated perfused beating heart. Circ Res 1990;67/3:564–573Google Scholar
  122. 1).
    Colucci WS, et al. N Engl J Med 1986;314:290PubMedGoogle Scholar
  123. 2).
    Cohn JN. N Engl J Med 1989;320:729PubMedGoogle Scholar
  124. 3).
    Dies F, et al. Circulation 1986; 74, II:39Google Scholar
  125. 4).
    Waagstein F, et al. Br Heart J 1975;137:1022Google Scholar
  126. 5).
    Hasenfuss G, et al. Basic Res Cardiol 1989;84,I:191PubMedGoogle Scholar
  127. 6).
    The Captopril-Digoxin Multicenter Research Group. JAMA 1988;259:539Google Scholar
  128. 7).
    DiBianco R, et al. N Engl J Med 1989;320:677PubMedGoogle Scholar
  129. 8).
    Hasenfuss G, et al. Klin Wochenschr 1991;69,XXIII:120Google Scholar
  130. 1.
    CAST investigators. Prelimnary report: effect of encalnide and flecalnide on mortality in a randomized trial of arrhythmia suppression after myocardial infarction. N. Engl. J. Med. 1989. 321; 406–412Google Scholar
  131. 2.
    Ruskln JN. The Cardiac Arrhythmia Suppression Trial (CAST) (editorial). N. Engl. J. Med. 1989. 321; 386–388Google Scholar
  132. 3.
    The CAPS Investigators. The Cardiac Arrhythmia Pilot Study. Am. J. Cardiol. 1986. 57; 91–95Google Scholar
  133. Evans WE, Relling, MV. Clinical pharmacokinetics-pharmacodynamics of anticancer drugs. Clinical Pharmacokinetics 16: 327–336, 1989.PubMedGoogle Scholar
  134. Evans WE, Crom WR, Stewart CF, et al. Clinical pharmacodynamics of high-dose methotrexate in acute lymphocytic leukemia, New England Journal of Medicine 314:471–477, 1986.PubMedGoogle Scholar
  135. Egorin MJ, Van Echo DA, Olman EA, et al. Prospective validation of a pharmacologically based dosing scheme for carboplatin. Cancer Research 45:5432–5438, 1985.Google Scholar
  136. Rodman JH, Abromowitch M, Sinkule JA, Rivera GK, Evans WE. Clinical pharmacodynamics of continuous infusion teniposide: systemic exposure as a determinant of response in a Phase I trial. Journal of Clinical Oncology 5: 1007–1014, 1987.PubMedGoogle Scholar
  137. Stoller RG, Hande KR, et al. Use of plasma pharmacokinetics to predict and prevent methotrexate toxicity. New England Journal of Medicine 297: 630–634, 1977.PubMedGoogle Scholar
  138. Milano G, Namer M, Boublil JL, et al. Relationship between systemic 5-FU passage and response in colorectal cancer patients treated with intrahepatic chemotherapy. Cancer Chemotherapy and Pharmacology 20: 71–74, 1987.PubMedGoogle Scholar
  139. Lennard L, Lilleyman JS. Variable mercaptopurine metabolism and treatment outcome in childhood lymphoblastic leukemia. Journal of Clinical Oncology 7:1816–1823, 1989.PubMedGoogle Scholar
  140. Lennard L, Lilleyman JS, Van Loon J, Weinshilboum RM. Genetic variation in response to 6-mercaptopurine for childhood acute lymphoblastic leukaemia. Lancet 336:225–29,1990.PubMedGoogle Scholar
  141. 1).
    M. Szamel, B. Rehermann, B. Krebs, R. Kurrle, and K. Resch Activation signals in human lymphocytes. Incorporation of polyunsaturated fatty acids into plasma membrane phospholipids regulates interleukin-2 synthesis via sustained activation of protein kinase C. J, Immunol. 143, 2806–2813 (1989)Google Scholar
  142. 2).
    M. Szamel, M. Kracht, B. Krebs, U. Hübner, and K. Resch Interleukin 2 synthesis and expression of high affinity interleukin 2 receptors require different signalling for the activation of protein kinase C. Cellular Immunol. 126, 117–128 (1990)Google Scholar
  143. 3).
    M. Szamel, B. Rehermann, U. Hübner, and K. Resch Inhibition of T-cell activation by cyclosporin A: inhibition of IL-2 Synthesis via prevention of sustained activation of protein kinase C by interference with the plasma membrane phospholipid metabolism. J. Immunol., submittedGoogle Scholar
  144. 1.
    Kahan, B.D. (1989) New England J. Medic. 321, 1725–1738.Google Scholar
  145. 2.
    Macleod, A.M. and Thomson, A.W. (1991) Lancet 337, 25–27.PubMedGoogle Scholar
  146. 3.
    Tocci, M.J., Matkovich, D.A., Collier, K.A., Kwok, P., Dumont, F., Iin, S., Degudicibus, S., Siekierka, J.J., Chin, J. and Hutchinson, N.I. (1989), J. Immunol. 143, 718–726.PubMedGoogle Scholar
  147. 4.
    Serfling, E., Barthelmäs, R., Pfeuffer, I., Schenk, B., Zarius, S., Mercurio, F. and Karin, M. (1989) EMBO J. 8, 465–473.PubMedGoogle Scholar
  148. 5.
    Randak, C., Brabletz, T., Hergenröther, M., Sobotta, I. and Serfling, E. (1990) EMBO J. 9, 2529–2536.PubMedGoogle Scholar
  149. 6.
    Brabletz, T., Pietrowski, I. and Serfling, E. (1991) Nucl. Acids Res. 19,61–67.PubMedGoogle Scholar
  150. 7.
    Emmel, E.A., Verweij, C.L., Durand, D.B., Higgins, K.M., Lacy, E. and Crabtree, G.R. (1989) Science 226, 1439–1441.Google Scholar
  151. 8.
    Siekierka, J.J., Hung, S.H.Y., Poe, M., Lin, C.S. and Sigal, N.H. (1989) Nature 341, 755–757.PubMedGoogle Scholar
  152. 9.
    Tropschug, M., Wachter, E., Mayer, S., Schonbrunner, E.R. and Schmid, F.X. (1990) Nature 346, 674–677.PubMedGoogle Scholar
  153. 10.
    Goebl, M.G. (1991) Cell 64, 1051–52.PubMedGoogle Scholar
  154. 11.
    Tanaka, M. and Herr, W. (1990) Cell 60, 375–386.PubMedGoogle Scholar
  155. Greenlee, W.F., R. Osborne, K.M. Dold, L.G. Hudson, M.J. Young, and W.A. Toscano, Jr. (1987). Rev. Biochem. Toxicol. 8: 1.Google Scholar
  156. Poland, A. and J.C. Knutson (1982). Annu. Rev. Pharmacol. Toxicol. 22:517.PubMedGoogle Scholar
  157. Poland, A. and J.C. Knutson (1982). Annu. Rev. Pharmacol. Toxicol. 22:517.PubMedGoogle Scholar
  158. Sutter, T.R., M.W. Andersen, J.C. Corton, K. Gaido, K. Guzman, and W.F. Greenlee (1991a). Banbury Report 35 (in press).Google Scholar
  159. Sutter, T.R., K. Guzman, K.M. Dold, and W.F. Greenlee (1991b). Toxicologist 11: 988.Google Scholar
  160. Vecchi, A., A. Mantovani, M. Sironi, W. Cairo, and S. Garattini (1980). Chem. Biol. Interact. 30: 337.PubMedGoogle Scholar
  161. Vos, J.G. (1977). CRC Crit. Rev. Toxicol. 5: 67.PubMedGoogle Scholar
  162. Wierda, D. and W.F. Greenlee (1991). In Principles and Practice of Immunotoxicoloav. Blackwell Scientific Pub., London (in press).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1918

Authors and Affiliations

  • Paul Jensen
    • 1
  1. 1.Instituts der Universität GöttingenGöttingenGermany

Personalised recommendations