The subject to be developed in this article covers a very large field of existence theory for linear and nonlinear partial differential equations. Indeed, problems of static elasticity, of the propagation of waves in elastic media, and of the thermodynamics of continua require existence theorems for elliptic, hyperbolic and parabolic equations both linear and nonlinear. Even if one restricts oneself to linear elasticity, there are several kinds of partial differential equations to be considered. In static problems we encounter second order systems, either with constant or with variable coefficients (homogeneous and non-homogeneous bodies), scalar second order equations (for instance either in the St. Venant torsion problems or in the membrane theory), fourth order equations (equilibrium of thin plates), eighth order equations (equilibrium of shells). Each case must be considered with several kinds of boundary conditions, corresponding to different physical situations. On the other hand, to every problem of static elasticity corresponds a dynamical one, connected with the study of vibrations in the elastic system under consideration. Moreover, problems of thermodynamics require the study of certain diffusion problems of parabolic type. In addition to that, the study of materials with memory requires existence theorems for certain integro-differential equations, first considered by Volterra.


Equilibrium Problem Existence Theorem Elliptic System Linear Elasticity Mixed Boundary 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Agmon, S.: Lectures on elliptic boundary value problems. Princeton, N. J. Toronto-New York-London: D. V. Nostrand Co. Inc. 1965.zbMATHGoogle Scholar
  2. [2]
    Ehrling, G.: On a type of eigenvalue problem for certain elliptic differential operators. Math. Scand. 2 (1954).Google Scholar
  3. [3]
    Fichera, G.: Sull’esistenza e sul calcolo delle soluzioni dei problemi al contorno, relativi all’equilibrio di un corpo elastico. Ann. Scuola Norm. Sup. Pisa, s. III 4 (1950).Google Scholar
  4. [4]
    — Lezioni sulle trasformazioni lineari. 1st. Mat. Univ. Trieste (Edit. Veschi) (1954).Google Scholar
  5. [5]
    — The Signorini elastostatics problem with ambiguous boundary conditions. Proc. of the Int. Symp. “Applications of the theory of functions in continuum mechanics”, vol. I, Tbilisi, Sept. 1963.Google Scholar
  6. [6]
    — Problemi elastostatici con vincoli unilaterali: il problema di Signorini con ambigue condizioni al contorno. Mem. Acc. Naz. Lincei, s. VIII 7, fasc. 5 (1964).Google Scholar
  7. [7]
    Fichera, G.: Linear elliptic differential systems and eigenvalue problems. Lecture notes in mathematics, vol. 8. Berlin-Heidelberg-New York: Springer 1965.Google Scholar
  8. [8]
    Fredholm, J.: Solution d’un problème fondamental de la théorie de l’élasticité. Ark. Mat. Astron. Fys. 2, 28 (1906).Google Scholar
  9. [9]
    Friedrichs, K. O.: Die Randwert-und Eigenwert-Probleme aus der Theorie der elastischen Platten. Math. Annalen, Bd. 98 (1928).Google Scholar
  10. [10]
    — On the boundary value problems of the theory of elasticity and Korn’s inequality. Ann. of Math. 48 (1947).Google Scholar
  11. [11]
    Fubini, G.: II principio di minimo e i teoremi di esistenza per i problemi al contorno relativi alle equazioni alle derivate parziali di ordine pari. Rend. Circ. Mat. Palermo (1907).Google Scholar
  12. [12]
    Garding, L.: Dirichlet’s problem for linear elliptic partial differential equations. Math. Scand. 1 (1953).Google Scholar
  13. [13]
    Gobert, J.: Une inégalité fondamentale de la théorie de l’élasticité.Bull. Soc. Roy. Sci. Liège 3-4 (1962).Google Scholar
  14. [14]
    Halmos, P. R.: Introduction to Hilbert space and the theory of spectral multiplicity. New York, N.Y.: Chelsea Publ. Comp. 1951.zbMATHGoogle Scholar
  15. [15]
    Halmos, P. R.: Measure theory. Princeton, N. J.-Toronto-New York-London: D. V. Nostrand Co. Inc. 1950.zbMATHGoogle Scholar
  16. [26]
    Hille, E., and R. Phillips: Functional analysis and semi-groups. Amer. Math. Soc. Coll. Publ. 31 (1957).Google Scholar
  17. [17]
    John, F.: Plane waves and spherical means applied to partial differential equations. Intersc. Tracts in Pure and Appl. Math. No. 2 (1955).Google Scholar
  18. [18]
    Korn, A.: Solution générale du problème d’équilibre dans la théorie de l’élasticité dans le cas où les efforts sont donnés à la surface. Ann. Université Toulouse (1908).Google Scholar
  19. [19]
    — Über einige Ungleichungen, welche in der Theorie der elastischen und elektrischen Schwingungen eine Rolle spielen. Bull. Intern., Cracov. Akad. umiejet (Classe Sci. Math. nat.) (1909).Google Scholar
  20. [20]
    Kupradze, V. D.: Potential methods in the theory of elasticity. Israel Program for Scientific Translations, Jerusalem (1965).Google Scholar
  21. [21]
    Lauricella, G.: Alcune applicazioni della teoria delle equazioni funzionali alia Fisica-Matematica. Nuovo Cimento, s. V 13 (1907).Google Scholar
  22. [22]
    Lax, P.: On Cauchy’s problem for hyperbolic equations and the differentiability of solutions of elliptic equations. Comm. Pure Appl. Math. 8 (1955).Google Scholar
  23. [23]
    Lichtenstein, L.: Über die erste Randwertaufgabe der Elastizitätstheorie. Math. Z. 20 (1924).Google Scholar
  24. [24]
    Marcolongo, R.: La teoria delle equazioni integrali e 1e sue applicazioni alla Fisica-Matematica. Rend. Accad. Naz. Lincei, s. V 16, 1 (1907).Google Scholar
  25. [25]
    Michlin, S. G.: Multidimensional singular integrals and integral equations. Oxford: Pergamon Press 1965.Google Scholar
  26. [26]
    Miranda, C.: Equazioni alle derivate parziali di tipo ellittico. Ergeb. der Mathem., H. 2. Berlin-Göttingen-Heidelberg: Springer 1955.Google Scholar
  27. [27]
    Nirenberg, L.: Remarks on strongly elliptic partial differential equations. Comm. Pure Appl. Math. 8 (1955).Google Scholar
  28. [28]
    Nirenberg, L.: On elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa, s. III 13 (1959).MathSciNetGoogle Scholar
  29. [29]
    Payne, L. E., and H.F.Weinberger: On Korn’s inequality. Arch. Rational Mech. Anal. 8 (1961).Google Scholar
  30. [30]
    Picone, M.: Sur un problème nouveau pour l’équation linéaire aux dérivées partielles de la théorie mathématique classique de l’élasticité. Colloque sur les équations aux dérivées partielles, CBRM, Bruxelles, May 1954.Google Scholar
  31. [31]
    Riesz, F., et B. Sz. Nagy: Leçons d’Analyse Fonctionelle, 3me éd. Acad. des Sciences de Hongrie, 1955.Google Scholar
  32. [32]
    Schechter, M.: A generalization of the problem of transmission. Ann. Scuola Norm. Sup. Pisa, s. III 15 (1960).Google Scholar
  33. [33]
    Sobolev, S. L.: Applications of functional analysis in mathematical physics. Trans. Math. Monogr. 7, Amer. Math. Soc. (1963).Google Scholar
  34. [34]
    Volterra, V.: Sulle equazioni integro-differenziali délia teoria dell’elasticità. Rend. Accad. Naz. Lincei, s. V 18 (1909).Google Scholar
  35. [35]
    Weyl, H.: Das asymptotische Verteilungsgesetz der Eigenschwingungen eines beliebig gestalteten elastischen Körpers. Rend. Circ. Mat. Palermo 39 (1915).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1973

Authors and Affiliations

  • Gaetano Fichera
    • 1
  1. 1.University of RomeRomeItaly

Personalised recommendations