Mesoscopic Dynamics of Fracture pp 36-48

Part of the Advances in Materials Research book series (ADVSMATERIALS, volume 1) | Cite as

Nanoscopic Modelling of the Adhesion, Indentation and Fracture Characteristics of Metallic Systems via Molecular Dynamics Simulations

  • H. Rafii-Tabar


Large-scale molecular dynamics simulations have been performed on canonical ensembles to model the adhesion and indentation characteristics of 3-D metallic nano-scale junctions in tip-substrate geometries, and the crack propagation in 2-D metallic lattices. It is shown that irreversible flows in nano-volumes of materials control the behaviour of the 3-D nano-contacts, and that local diffusional flow constitutes the atomistic mechanism underlying these plastic flows. These simulations show that the force of adhesion in metallic nano-contacts is reduced when adsorbate monolayers are present at the metal—metal junctions. Our results are in agreement with the conclusions of very accurate point-contact experiments carried out in this field. Our fracture simulations reveal that at low temperatures cleavage fractures can occur in both an elemental metal and an alloy. At elevated temperatures, the nucleation of dislocations is shown to cause a brittle-to-ductile transition. Limiting crack propagation velocities are computed for different strain rates and a dynamic instability is shown to control the crack movement beyond this limiting velocity, in line with the recent experimental results.


Nano-contact modelling MD simulation crack propagation tip-substrate interaction adhesion indentation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. E. Drexler, Nanosystems (J. Wiley Inc. N. Y, 1992 ).Google Scholar
  2. 2.
    M. D. Pashley, J. B. Pethica and D. Tabor: Wear 100, 7 (1984).CrossRefGoogle Scholar
  3. 3.
    J. B. Pethica and W. C. Oliver: Mat. Res. Soc. Symp. Proc. 130, 13 (1989).CrossRefGoogle Scholar
  4. 4.
    D. H. Buckley: Surface Effects in Adhesion, Friction, Wear and Lubrication (Elsevier, 1981 ).Google Scholar
  5. 5.
    T. R. Thomas: Rough Surfaces ( Longmans, London, 1982 ).Google Scholar
  6. 6.
    J. A. Greenwood: Proc. R. Soc. London Ser. A 393, 133 (1984).ADSCrossRefGoogle Scholar
  7. 7.
    L. B. Freund: Dynamic Fracture Mechanics (Cambridge University Press, 1990 ).Google Scholar
  8. 8.
    J. Finberg et al.: Phys. Rev. Lett. 67, 457 (1991)ADSCrossRefGoogle Scholar
  9. J. Finberg: Phys. Rev. B 45, 5146 (1992).Google Scholar
  10. 9.
    E. Sharon et al.: Phys. Rev. Lett. 74, 5096 (1995).ADSCrossRefGoogle Scholar
  11. 10.
    M. P. Allen and D. J. Tildesley: Computer Simulation of Liquids ( Clarendon Press, Oxford 1987 ).MATHGoogle Scholar
  12. 11.
    H. Rafii-Tabar, A. P. Sutton: Philos. Mag. Lett. 63, 217 (1991).ADSCrossRefGoogle Scholar
  13. 12.
    M. W. Finnis, J. E. Sinclair: Philos. Mag. A 50, 45 (1984).ADSCrossRefGoogle Scholar
  14. 13.
    A. P. Sutton, J. Chen: Philos. Mag. Lett. 61, 139 (1990).ADSCrossRefGoogle Scholar
  15. 14.
    H. Rafii-Tabar et al.: Mat. Res. Soc. Symp. Proc. 239, 133 (1991).CrossRefGoogle Scholar
  16. 15.
    H. Rafii-Tabar, Y. Kawazoe: Jpn. J. Appl. Phys. 32, 1394 (1993).ADSCrossRefGoogle Scholar
  17. 16.
    A. P. Sutton, J. B. Pethica, H. Rafti-Tabar, J. A. Nieminen: in “Electron Theory in Alloy Design” ( Institute of Materials, London, 1994 ).Google Scholar
  18. 17.
    H. Rafti-Tabar et al.: Surf. Sci. 385, 187 (1997).Google Scholar
  19. 18.
    L. Hua, H. Rafti-Tabar, M. Cross: Philos. Mag. Lett 75, 237 (1997).ADSCrossRefGoogle Scholar
  20. 19.
    H. Rafti-Tabar, L. Hua, M. Cross: J. Phys.: Condens. Matter 10, 2375 (1997).ADSCrossRefGoogle Scholar
  21. 20.
    R. K. Pathria: Statistical Mechanics ( Pergamon Press, Oxford, 1972 ).Google Scholar
  22. 21.
    S. Nosé: J. Chem. Phys. 81, 511 (1984)ADSCrossRefGoogle Scholar
  23. W. G. Hoover: Phys. Rev. A 31, 1695 (1985).ADSCrossRefGoogle Scholar
  24. 22.
    A. P. Sutton, J. B. Pethica: J. Phys.: Condens. Matter 2, 5317 (1990).ADSCrossRefGoogle Scholar
  25. 23.
    M. Born, K. Huang: Dynamical Theory of Crystal Lattices ( Clarendon Press, Oxford, 1954 ).MATHGoogle Scholar
  26. 24.
    F. F. Abraham et al.: Phys. Rev. Lett. 73, 272 (1994).MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • H. Rafii-Tabar
    • 1
  1. 1.Nano-Science Simulation Group, Centre for Numerical Modelling & Process Analysis, School of Computing & Mathematical SciencesUniversity of Greenwich, Woolwich CampusLondonUK

Personalised recommendations