Advertisement

Abstract

Fluorine has played a significant role in insect control since about 1896 when sodium fluoride and various iron fluorides were patented in England as insecticides. Sodium fluoride was used in the United States for cockroach control before 1900 and was introduced in 1915 for the control of poultry lice. However, the use of fluorine insecticides did not become general until the 1930’s when the disadvantages of arsenical residues on food crops became apparent and the inorganic fluorine compounds were introduced as safer substitutes.

Keywords

Insecticidal Action Sodium Fluoride Insecticidal Property Systemic Insecticide Methyl Sulfonyl Fluoride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aldridge, W. N.: Differentiation of true and pseudo cholinesterase by organophosphorus compounds. Biochem. J. 53, 62–67 (1953).PubMedGoogle Scholar
  2. Arthur, B. W., and J. E. Casida: Biological and chemical oxidation of tetramethyl phosphorodiamidic fluoride (Dimefox). J. Econ. Entomol. 51, 49–56 (1958).Google Scholar
  3. Ascher, K. R. S.: Prevention of oviposition in the housefly through tarsal contact agents. Science 125, 938 (1957).PubMedCrossRefGoogle Scholar
  4. Ascher, K. R. S.: Insecticidal properties of N-substituted fluoracetamides. Riv. Parassitol. 19, 229–231 (1958).Google Scholar
  5. Ascher, K. R. S.: Reduced oviposition in Aedes aegypti following tarsal exposure to a fluorocarbon. Experienta (Basel) 14, 8–9 (1958).CrossRefGoogle Scholar
  6. Ascher, K. R. S.: Ddt-resistance-induced enhanced susceptibility towards cetyl fluoride and cetyl fluor-acetate. Xiii Intern. Congr. Entomol. Sec. 12, 557 (1960).Google Scholar
  7. Bartlett, G. R.: The mechanism of action of monofluoroethanol. J. Pharmacol. exp. Ther. 106, 464–467 (1952).PubMedGoogle Scholar
  8. Bergmann, E. D., and A. Kaluszyner: Bis (p-chlorophenyl) (trichloromethyl) carbinol and related compounds. J. Org. Chem. 23, 1306–1308 (1958).CrossRefGoogle Scholar
  9. Bergmann, E. D., P. Moses, M. Neeman, A. Kaluszyner, and S. Reuter: Methylfluorinated methyldiarylcarbinols and related compounds. J. Amer. chem. Soc. 79, 4174–4178 (1957).CrossRefGoogle Scholar
  10. Bidstrup, P. L., J. A. Bonnell, and A. G. Beckett: Paralysis following poisoning by a new organic phosphorus insecticide. Brit. med. J. 1953 I, 1068–1072.CrossRefGoogle Scholar
  11. Blinn, R. C., and F. Gunther: Structure proof of 2,2-bis-(4-cuorophenyl)-1,1-dichloroethane. J. Amer. chem. Soc. 72, 1399–1400 (1950).CrossRefGoogle Scholar
  12. Blum, M. S.: The toxicities of fluorinated cyclohexanes to house flies. J. Econ. Entomol. 51, 413–414 (1958).Google Scholar
  13. Blum, M. S., J. J. Pratt, and J. Bornstein: Fluorinated analogues of Ddt as toxicants and Ddt synergists. J. Econ. Entomol. 52, 626–628 (1959).Google Scholar
  14. Bornstein, J.,M. S. Blum, and J. J. Pratt: The synthesis and properties of some 2,2-difluoro1,1-diarylethanols and 2-fluoro-1,1-diarylethanes. J. Org. Chem. 22, 1210–1213 (1957).Google Scholar
  15. Bradlow, H. L., and C. VanDerWerf: Preparation and chemical composition of difluorodiphenyltrichloroethane. J. Amer. chem. Soc. 69, 662–664 (1947).CrossRefGoogle Scholar
  16. Browning, H. C., F. Fraser, S Shapiro, I. Glickman, and M. Dubrule: Biological activity of Ddt and related compounds. Canad. J. Res. 26 D, 282–300 (1948).Google Scholar
  17. Buckle, F. S., R. Heap, and B. C. Saunders: Toxic fluorine compounds containing the C-F linkage Pt. Iii. Fluoroacetamide and related compounds. J. chem. Soc. 1949, 912–919.Google Scholar
  18. Casida, J. E., K. B. AuGusTrNssox, and G. Jonsson: Stability, toxicity, and reaction mechanism with esterases of certain carbamate insecticides. J. Econ. Entomol. 53, 205–212 (1960).Google Scholar
  19. Chadwick, L. E., and D. L. Hill: Inhibition of cholinesterase by diisopropyl fluorophosphate, prostigmine, and hexaethyl tetraphosphate in the roach. J. Neurophysiol. 10, 235–246 (1947).Google Scholar
  20. Chefurka, W.: Oxidative metabolism of carbohydrate in insects. I. Glycolysis in the housefly Musca domestica L. Enzymologia 17, 73–89 (1954).PubMedGoogle Scholar
  21. Cohen, S., A. Kaluszyner, and R. Mechoulam: On the fluorination of Ddt with hydrogen fluoride and mercuric oxide. J. Amer. chem. Soc. 79, 5979–5981 (1957).CrossRefGoogle Scholar
  22. Cohen, S., and S. Tahori: Mode of action of di-(p-chlorophenyl)-(trifluoromethyl)-carbinol, as a synergist to Ddt against Ddt-resistant houseflies. J. Agr. Food Chem. 5, 519–523 (1957).CrossRefGoogle Scholar
  23. Cranham, J. E., and B. A. Stevenson: p-Chlorobenzyl p-chlorophenyl sulfide. Further aspects of field use. Chem. Ind. London 1953, 1206.Google Scholar
  24. Cristol, S. J.: A kinetic study of the dehydrochlorination of substituted 2,2-diphenylchloroethanes related to Ddt. J. Amer. chem. 67, 1494–1498 (1945).CrossRefGoogle Scholar
  25. David, W. A. L., and B. O. C. Gardiner: Investigations on the systemic insecticidal action of sodium fluoroacetate and three phosphorus compounds on Aphis lake. Ann. Appl. Biol. 38, 91–110 (1951).CrossRefGoogle Scholar
  26. David, W. A. L., and B. O. C. Gardiner: Fluoroacetamide as a systemic insecticide. Nature (Lond.) 181, 1810 (1958).CrossRefGoogle Scholar
  27. David, W. A. L., and B. O. C. Gardiner: The action of the systemic insecticide fluoroacetamide on certain aphids and on Pieris brassicae. Bull. Entomol. Res. 50, 25–38 (1959).CrossRefGoogle Scholar
  28. Davies, D. R.: Cholinesterases and mode of action of some anticholinesterases. J. Pharm. Pharmacol. 6, 1–26 (1954).PubMedCrossRefGoogle Scholar
  29. Faulkner, P.: A hexose-1-phosphatase of silkworm blood. Biochem. J. 60, 590–591 (1955).PubMedGoogle Scholar
  30. Fuxuto, T. R.: The chemistry and action of organic phosphorus insecticides. In: R. L. Metcalf, Ed., Adv. Pest Control Res. 1, 147–218 (1957).Google Scholar
  31. Gilmour, D.: Biochemistry of Insects. New York: Academic Press 1961.Google Scholar
  32. Graham, K.: Respiratory enzyme mechanisms in an insect with reference to the qualitative and quantitative effects of inhibitors as an approach to insect toxicology. Trans. roy. Soc. Can. Sec. 5, 40, 41–75 (1946).Google Scholar
  33. Griffrris, J. T., and O. E. Tauber: Evaluation of sodium fluoride as a stomach poison and as a contact poison against the roach Periplaneta americana, L. J. Econ. Entomol. 36, 536–540 (1943).Google Scholar
  34. Hamada, M.: Studies on the synthesis of Ddt-type compounds and the relation of their chemical constitutions to insecticidal activities. 1–136 pp., privately printed (1957).Google Scholar
  35. Hanna, A. D., E. Judenko, and W. Heatherington: Systemic insecticides for the control of insects transmitting swollen-shoot virus disease of cacao in the Gold Coast. Bull. Entomol. Res. 46, 669–710 (1955).CrossRefGoogle Scholar
  36. Harrison, I. R.: Control of bulb scale mite in narcissus. Plant Path. 5, 127–129 (1956).CrossRefGoogle Scholar
  37. Heal, R., and H. Menusan: A technique for the bloodstream injection of insects and its application in tests of certain insecticides. J. Econ. Entomol. 41, 535–543 (1948).Google Scholar
  38. Heap, R., and B. C. Saunders: Esters containing phosphorus. Vii. Substituted diaminofluorophosphine oxides. J. chem. Soc. 1948, 1313–1316.Google Scholar
  39. Hennessy, D. J., J. Fratantoni, J. Hartigan, H. H. Moorefield, and M. H. J. Weiden: Toxicity of 2-(2-halo-4-chlorophenyl)-2-(4-chlorophenyl)-1,1,1-trichloroethanes to resistant houseflies. Nature (Lond.) 190, 341 (1961).CrossRefGoogle Scholar
  40. Hockenyos, G. L.: The mechanism of the absorption of sodium fluoride by roaches. J. Econ. Entomol. 26, 1162–1169 (1933).Google Scholar
  41. Hoechst Data sheet on fluoracetylphenyl urea. Farbwerke Hoechst (1963).Google Scholar
  42. Howard, H.: Process for making artificial cryolite. U.S. Pat. 1, 475–155 (1924).Google Scholar
  43. Hiiisman, H. O., J. H. Uhlenbroek, and J. Meltzer: Preparation and acaricidal properties of diphenyl sulfones. Rec. Tray. Chim. T 77, 103–122 (1958).CrossRefGoogle Scholar
  44. Kaliiszyner, A.: Cyclic analogues of Ddt-like compounds. J. Org. Chem. 25, 473 (1960).CrossRefGoogle Scholar
  45. Kaliiszyner, A., S. Reuter, and E. D. Bergmann: Synthesis and biological properties of diaryl (trifluoromethyl)-carbinol. J. Amer. chem. Soc. 77, 4164–4168 (1955).CrossRefGoogle Scholar
  46. Kenaga, E. E.: Some biological, chemical and physical properties of sulfuryl fluoride as an insecticidal fumigant. J. Econ. Entomol. 50, 1–6 (1957).Google Scholar
  47. Kilgore, L.: New German insecticides. Soap 21 (12), 138–139, 169–171 (1945).Google Scholar
  48. Kirkwood, S., and J. Dacey: Synthesis of some analogues of 1,1-bis-(p-chlorophenyl)2,2,2-trichloroethane (Ddt). Canad. J. Res. 24 D, 69–72 (1946).Google Scholar
  49. Kirkwood, S., and P. H. Pamirs: The relationship between the lipoid affinity and the insecticidal action of 1,1-bis-(p-fluorophenyl)-2,2,2-trichloroethane and related substances. J. Pharmacol. expt. Ther. 87, 375–381 (1946).Google Scholar
  50. Körting, A.: Untersuchungen über die insektizide Wirkung einiger Fluorverbindungen. Z. Pflanzenkrankh Pflanzenschutz. 43, (8/9), 502–516 (1933).Google Scholar
  51. Lange, W., and G. VonKreuger: ‘Mier Ester der Monofluorphosphorsäure. Ber. 65, 1598 (1932).Google Scholar
  52. Lehman, A. J.: The toxicology of the newer agricultural chemicals. Quart. Bull. Assoc. Food Drug Officials, U.S. 15, 122 (1951).Google Scholar
  53. Lewis, S. F., and K. S. Fowler: Effect of diisopropylphosphorofluoridate on the acetylcholine content of flies. Nature (Loud.) 178, 919–920 (1956).CrossRefGoogle Scholar
  54. Lewis, S. F., and B. N. Smallman: The estimation of acetylcholine in insects. J. Physiol. 134, 241–256 (1956).PubMedGoogle Scholar
  55. Lipke, H., and C. W. Kearns: Ddt-dehydrochlorinase. In: R. L. Metcalf, Ed., Adv. Pest Control Res. 3, 253–287 (1960).Google Scholar
  56. Lord, K. A.: Toxicity of Ddt analogues and Bhc isomers to M. sanborni and O. surinamensis. Ann Appl. Biol. 35, 505–526 (1948).CrossRefGoogle Scholar
  57. Lord, K. A.: The effect of insecticides on respiration. II. The effects of a number of insecticides on the oxygen uptake of adult Tribolium castaneum Hbst. at 25° C. Ann. Appl. Biol. 37, 105–122 (1950).CrossRefGoogle Scholar
  58. Marcovitch, S.: Studies on toxicity of fluorine compounds. Tenn. Agr. Exp. Sta. Bull. 139 (1928).Google Scholar
  59. Marcovitch, S., and W. W. Stanley: Fluorine compounds useful in the control of insects. Tenn. Agr. Exp. Sta. Bull. 182 (1942).Google Scholar
  60. Martin, H.: Chemische Konstitution und Wirkung sulfonsauregruppenhaltigen Motten.schutzmittel. Chimia 12, 191–215 (1958).Google Scholar
  61. Martin, H.: Guide to the chemicals used in crop protection. Research Branch, Canad., Dept. Agr., Publ. 1093, Ed. 4 (1961).Google Scholar
  62. Martin, H., and H. Shaw: British Intelligence Objectives Rept. 1095. Item 22, 1946. H. M. Stationery Office, London.Google Scholar
  63. Meikle, R. W., D. Stewart, and O. H. Globus: Fumigant mode of action, drywood termite metabolism of Vikane fumigant shown by labelled pool technique. J. Agr. Food Chem. 11, 226–230 (1963).CrossRefGoogle Scholar
  64. Mengle, D. G., and J. E. Casida: Inhibition and recovery of brain cholinesterase activity in houseflies poisoned with organophosphate and carbamate compounds. J. Econ. Entomol. 51, 750–757 (1958).Google Scholar
  65. Metcalf, C. L., W. P. Flint, and R. L. Metcalf: Destructive and Useful Insects, Ed. 4. New York: McGraw-Hill 1962.Google Scholar
  66. Metcalf, R. L.: Some insecticidal properties of fluorine analogues of Ddt. J. Econ. Entomol. 41, 416–421 (1948).Google Scholar
  67. Metcalf, R. L.: Physiological basis for insect resistance to insecticides. Physiol. Revs. 35, 197–232 (1955).Google Scholar
  68. Metcalf, R. L.: The role of systemic insecticides in world agriculture. Plant Protection Conference, 1956, p. 131–142. London: Butterworths Scientific Publications 1957.Google Scholar
  69. Metcalf, R. L.: Unpublished data (1963).Google Scholar
  70. Metcalf, R. L., and T. R. Fukuto: Meta-sulfurpentafluorophenyl diethyl phosphate and meta-sulfurpentafluorophenyl N-methylcarbamate as insecticides and anticholinesterases. J. Econ. Entomol. 55, 340–341 (1962).Google Scholar
  71. Metcalf, R. L., and M. Y. Winton: Insecticidal carbamates: position isomerism in relation to activity of substituted phenyl N-methylcarbamates. J. Econ. Entomol. 55, 889–894 (1962).Google Scholar
  72. Metcalf, R. L., and D. L. Lindgren: Insecticidal properties of elemental fluorine. J. Econ. Entomol. 41, 522 (1948).Google Scholar
  73. Metcalf, R. L., R. B. March, and M. Maxon: Substrate preferences of insect cholinesterase. Ann. Entomol. Soc. Amer 48, 222–228 (1955).Google Scholar
  74. Moorefield, H. H., M. H. J. Weiden, and D. J. Hennessy: Relationship of the insecticidal and the free radical activities of Ddt. Contrib. Boyce Thompson Inst. 21, 481–486 (1962).Google Scholar
  75. Morrow, J. E.: Insecticide and method of producing same. U.S. Patent 2, 210, 594 (1941).Google Scholar
  76. Müller, P.: Über Zusammenhänge zwischen Konstitution und insektizider Wirksamkeit. Helv. Chim. Acta 29, 1560–1580 (1946).Google Scholar
  77. Negherbon, W. O.: Handbook of Toxicology. Vol. Iii. Insecticides. Philadelphia, London: W. B. Saunders Co., 1959.Google Scholar
  78. O’Brien, R. D.: Toxic Phosphorus Esters. New York, London: Academic Press 1960.Google Scholar
  79. Perkow, W.: Die Insektizide. Heidelberg: Alfred Huthy 1956.Google Scholar
  80. Peters, R. A., R. Wakelin, P. Buffa, and L. C. Thomas: Biochemistry of fluoracetate poisoning. The isolation and some properties of the fluorotricarboxylic acid inhibitor of citrate metabolism. Proc. Roy. Soc. (B) 140, 497–507 (1953).CrossRefGoogle Scholar
  81. Phillips, M. A.: The fluoracetate series of pesticides. World Crops 7, 480–482 (1955).Google Scholar
  82. Pilat, M.: Histological researches into the action of insecticides on the intestinal tube of insects. Bull. Entomol. Res. 26, 165–172 (1935).CrossRefGoogle Scholar
  83. Pouterman, E., and A. Girardet: Fluoration of Ddt. Experientia (Basel) 2, 459 (1946).CrossRefGoogle Scholar
  84. Riemschneider, R.: Zur Kenntnis der Kontakt-Insektizide. II. Pharmazie 9 (1), 651–800 (1950).Google Scholar
  85. Riemschneider, R.: Zur Chemie von Polyhalocyclopentadienen und verwandten Verbindungen. IV. Mitteilung: Thermische Spaltung und Oxydation des Adduktes C10H6C16. Ber. 89, 2697–2701 (1956).CrossRefGoogle Scholar
  86. Riemschneider, R.: Chemical structure and activity of Ddt analogues with special consideration of their spatial structures. In: R. L. Metcalf, Ed., Adv. Pest Control Res. 2, 307–350 (1958).Google Scholar
  87. Ripper, W.: Systemic insecticides. Paper read at 63rd International Congress of Crop Protection, Paris 1952.Google Scholar
  88. Ripper, W.: The status of systemic insecticides in pest control practices. In: R. L. Metcalf, Ed., Adv. Pest Control Res. 1, 305–352 (1957).Google Scholar
  89. Ripper, W., R. M. Greenslade, and G. S. Hartley: Selective insecticides and biological control. J. Econ. Entomol. 44, 448–459 (1951).Google Scholar
  90. Roeder, K., and N. K. Kennedy: The effect of certain tri-substituted phosphine oxides on synaptic conduction in the roach. J. Pharmacol. exp. Ther. 114, 211–220 (1955).PubMedGoogle Scholar
  91. Roeder, K., N. K. Kennedy, and E. A. Samson: Synaptic conduction to giant fibers of the cockroach and the action of anticholinesterases. J. Neurophysiol. 10, 1–10 (1947).PubMedGoogle Scholar
  92. Rogers, E., H. Brown, I. Rasmussen, and R. Heal: The structure and toxicity of Ddt insecticides. J. Amer. chem. Soc. 75, 2991–2999 (1953).CrossRefGoogle Scholar
  93. Sacktor, B.: Investigations on the mitochondria of the housefly, Musca domestica L. I. Adenosinetriphosphatase. J. Gen. Physiol. 36, 371–387 (1953).CrossRefGoogle Scholar
  94. Saunders, B. C.: Some aspects of the chemistry and toxic action of organic compounds containing phosphorus and fluorine. Cambridge University Press, 1957.Google Scholar
  95. Schrader, G.: The development of new insecticides. British Intelligence Objectives Subcommittee, Final Report 914. London, 1947 a.Google Scholar
  96. Schrader, G.: Synthetic insecticides. British Intelligence Objectives Sub-committee, Final Report 1808. London, 1947 b.Google Scholar
  97. Schrader, G.: Die Entwicklung neuer Insektizide auf Grundlage organischer Fluor-und Phosphor-Verbindungen. Angew. Chem., Monograph No. 62 (1952).Google Scholar
  98. Schrader, G.: Die Entwicklung neuer insektizider Phosphorsäure-Ester, Ed. 3. Weinheim: Verlag Chemie GmbH 1963.Google Scholar
  99. Shafer, G. D.: How contact insecticides kill. Mich. Tech. Bull. 15 (1915).Google Scholar
  100. Shepard, H. H., and R. E. Carter: The relative toxicity of some fluorine compounds as stomach insecticides. J. Econ. Entomol. 26, 913 (1933).Google Scholar
  101. Smallman, B. N., and R. W. Fisher: Effect of anticholinesterases on acetylcholine levels in insects. Canad. J. Biochem. 36, 575–586 (1958).PubMedCrossRefGoogle Scholar
  102. Stewart, D.: Sulfuryl fluoride — a new fumigant for control of the drywood termite Kalotermes minor Hagen. J. Econ. Entomol. 50, 7–11 (1957).Google Scholar
  103. Summerford, W. T.: Chemistry and toxicity of some organofluorine insecticides. Adv. Chem., Series 1, 160–174 (1950).CrossRefGoogle Scholar
  104. Sweetman, H. L.: Tests for toxicity of arsenicals and sodium fluoride to the American roach, Periplaneta americana L. Canad. Entomol. 73, 31–34 (1941).CrossRefGoogle Scholar
  105. Tahori, A.: Diaryl-trifluoromethylcarbinols as synergists for Ddt against Ddt-resistant houseflies. J. Econ. Entomol. 48, 638–642 (1955).Google Scholar
  106. Tahori, A.: Selection for a fluoracetate resistant strain of houseflies and investigation of its resistance pattern. J. Econ. Entomol. 56, 67–69 (1963).Google Scholar
  107. Tahori, A., S. Cohen, and A. Kaluszyner: Ddt analogues as synergists for Ddt. Experientia (Basel) 14, 25–26 (1958).CrossRefGoogle Scholar
  108. VonOettingen, W. F., and N. Sharpless: The toxicity and toxic-manifestations of Ddt as influenced by chemical changes in the molecule. J. Pharmacol. exp. Ther. 88, 400 113 (1946).Google Scholar
  109. Warburg, O., and W. Christian: Isolation and crystallization of enolase. Biochem. Z. 310, 384–421 (1942).Google Scholar
  110. Wilson, I. B., M. A. Harrison, and S. Ginsburg: Carbamyl derivatives of acetylcholine. J. biol. Chem. 236, 1498–1450 (1961).PubMedGoogle Scholar
  111. Winteringham, F. P. W., A. Harrison, M. A. Mckay, and A. Weatherly: Biochemistry of diisopropylphosphorofluoridate poisoning in the adult housefly. Biochem. J. 65, Proc. 49 (1957).Google Scholar
  112. Woke, P.: Effects of some ingested insecticides on the midgut wall of the southern armyworm larva. J. Agr. Res. 61, 321–329 (1940).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1966

Authors and Affiliations

  • R. L. Metcalf

There are no affiliations available

Personalised recommendations