Advertisement

Periodic Groups of Odd Exponent

  • S. I. Adyan
Part of the Lecture Notes in Mathematics book series (LNM, volume 372)

Abstract

In 1902 Burnside [5] posed the following problem:

Keywords

Steklov Institute Abelian Subgroup Solvable Group Periodic Group Finite Subgroup 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    С.И. Адяном [S.I. Adyan], “’=1eoHnHeiHHie HenpHeoAHmbe GHCTCMHl rpynnoeoix TomgecTo [Infinite irreducible systems of group identities], Izv. Akad. Nauk SSSR Ser. Mat. 34 (1970), 715–734; Math. USSR-Izv. 4 (1970), 721–739 (1971). MR444078.Google Scholar
  2. [2]
    С.И. Адяном [S.I. Adyan], “Бесконечные неприводимые системы групповых тождеств” [On some torsion-free groups], Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971), 459–468; Math. USSR-Izv. 5 (1971), 475–484. MR441303.Google Scholar
  3. [3]
    С.И. Адяном [S.I. Adyan], “Подгруппах свободных групп нечетного показателя’ [Subgroups of free groups of odd exponent], Trudb Mat. Inst. Stekiov. 112 (1971), 64–72.Google Scholar
  4. [4]
    M. Bass, “The degree of polynomial growth of finitely generated nilpotent groups”, Proc. London Math. Soc. 25 (1972), 603–614.Google Scholar
  5. [5]
    W. Burnside, “On an unsettled question in the theory of discontinuous groups”, Quart. J. Pure AppZ. Math. 33 (1902), 230–238. FdM33,149.Google Scholar
  6. [6]
    М.И. Каргаполов [M.I. Kargapolov, Yu.l. Merzljakov, V.N. Remeslennikov], KoypoecRaa reTpaab (HepeuWHH6e 34ga1e TenpnR -pynn) [Mouron notebook. Unsolved problems in the theory of groups,3rd edition, supplemented] (Izdat. Sibirsk. Otdel. Akad. Nauk SSSR, Novosibirsk, 1969). MR344339 (1st edition); MR371448 (2nd edition).Google Scholar
  7. [7]
    John Milnor, Problem 5603, Amer. Math. Monthly 75 (1968), 685–686.Google Scholar
  8. [8]
    John Milnor, “Growth of finitely generated solvable groups”, J. Differential Geometry 2 (1968), 447–449. MR396212.Google Scholar
  9. [9]
    Постскриптум [P.S. Novikov, S.I. Adyan], “бесконечных периодических групп. Я” [infinite periodic groups. I], Izv. Akad. Nauk SSSR Ser. Mat. 32 (1968), 212–244; Math. USSR-12v. 2 (1968), 209–236. MR391532a.Google Scholar
  10. [10]
    Постскриптум [P.S. Novikov, S.I. Adyan], “бесконечных периодических групп. Я” [Infinite periodic groups. II], Izv. Akad. Nauk SSSR Ser. Mat. 32 (1968), 251–524; Math. USSR-Izv. 2 (1968), 241–479 (1969). MR391532b.Google Scholar
  11. [11]
    Постскриптум [P.S. Novikov, S.I. Adyan], “бесконечных периодических групп. Я” [Infinite periodic groups. III], Izv. Akad. Nauk SSSR Ser. Mat. 32 (1968), 709–731; Math. USSR-Izv. 2 (1968), 665–685 (1969). MR391532c.Google Scholar
  12. [12]
    Joseph A. Wolf, “Growth of finitely generated solvable groups and curvature of Riemannian manifolds”, J. Differential Geometry 2 (1968), 421–446. MR401939.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1974

Authors and Affiliations

  • S. I. Adyan
    • 1
  1. 1.Steklov InstituteMoscowUSSR

Personalised recommendations