Advertisement

Chemical influences of other plants (allelopathy)

  • Michael Evenari
  • D. J. Carr
Chapter
Part of the Encyclopedia of Plant Physiology / Handbuch der Pflanzenphysiologie book series (532, volume 16)

Abstract

The plant in innumerable chemical ways controls its own development from germination to flowering and the ripening of fruits and seeds. These chemical controls are “self„ controls as certain substances, like growth hormones, germination inhibitors etc., produced by the plant body itself, regulate the physiological functions of this self-same body.

Literature

  1. Addicott, F. T., and R. S. Lynch: Physiology of abscission. Annual Rev. Plant Physiol. 6, 211–238 (1955).Google Scholar
  2. Allen, M. C., and C. M. Haenseler: The antagonistic action of Trichoderma and Rhizoctonia and other soil fungi. Phytopathology 25, 244–252 (1935).Google Scholar
  3. Anderson, A. B., and E. Zavarin: Nature of some decay-retardant extractive components in incense Cedar heartwood (Librocedrus decurrens Torrey). Nature (Lond.) 181, 1275–1276 (1958).Google Scholar
  4. Andrews, F. W.: The parasitism of Striga hermonthica Benth. on Sorghum spp. under irrigation. Ann. appl. Biol. 32, 193–200 (1945).PubMedGoogle Scholar
  5. Arens, K. : Die kutikuläre Exkretion des Laubblattes. Jb. wiss. Bot. 80, 248–300 (1934).Google Scholar
  6. Audus, L. J., and A.M. Cheatham: Investigations on the significance of ethereal oils in regulating leaf temperatures and transpiration rates. Ann. Bot. (Lond.) 4, 465–483 (1940).Google Scholar
  7. Aytouns, R. S. C. : The genus Trichoderma, its relationship with Armillaria mellea and Polyporus schweinitzii together with preliminary observations on its ecology in woodland soils. Trans, bot. Soc. Edinb. 36, 99–114 (1953).Google Scholar
  8. Bach, E. : On hydrocyanic acid formation in Pholiota aurea. Proc. 7th Intern. Bot. Congr. Stockholm 1950, S. 454.Google Scholar
  9. Bachmann, E. : Der Einfluß von Fusarinsäure auf die Wasserpermeabilität von pflanzlichen Protoplasten. Phytopath. Z. 27, 255–288 (1956).Google Scholar
  10. Baldacci, E.: La resistenza delle piante alle malattie. Soc. an. edit. Dante Alighieri 1942.Google Scholar
  11. Bartels, W. : Untersuchungen über die Inaktivierung des Tabakmosaikvirus durch Extrakte und Sekrete von höheren Pflanzen und einigen Mikroorganismen. Phytopath. Z. 25, 72–98, 113–152 (1955/56).Google Scholar
  12. Barton, R.: Germination of oospores of Phyt’hium mamillatum in response to exudates from living seedlings. Nature (Lond.) 180, 613–614 (1957).Google Scholar
  13. Bautz, E.: Einwirkung verschiedener Bodentypen und Bodenextrakte auf die Keimung von Picea excelsa. Z. Bot. 41, 41–84 (1953).Google Scholar
  14. Becker, Y., et L. Guyot: Sur une particularité fonctionelle des exudats racinaires de certains végétaux. C. R. Acad. Sci. (Paris) 232, 1585–1587 (1951).Google Scholar
  15. Becker, Y., L. Guyot, M. Massenot et J. Montégut: Sur la présence d’excrétas radiculaires toxiques dans le sol de la pelouse herbeuse à Brachypodium pinnatum du Nord de la France. C. R. Acad. Sci. (Paris) 231, 165–167 (1950).Google Scholar
  16. Becker, Y., L. Guyot et J. Montégut: Sur quelques incidences phytosociologiques du problème des excrétions racinaires. C. R. Acad. Sci. (Paris) 232, 2472–2474 (1951).Google Scholar
  17. Bendz, G.: Gallic acid isolated from water extracts of litter from Acer platanoides. Physiol. Plantarum (Cph.) 9, 243–246 (1956).Google Scholar
  18. Bennett, E. L., and J. Bonner: Isolation of plant growth inhibitors from Thamnosma montana. Amer. J. Bot. 40, 29–33 (1953).Google Scholar
  19. Berducon, J.: Recherches sur le mode d’action de certains champignons parasite (Nectria). C. R. Acad. Sci. (Paris) 228, 1052 (1949).Google Scholar
  20. Berducon, J.: Mécanisme de la formation des chancres à Nectria du pommier. Thèse Fac. Sci. Toulouse 1957.Google Scholar
  21. Berezova, E. F. : Die gegenseitigen Beziehungen zwischen den Pflanzen und der Mikroflora des Bodens. [Russian.] Agrobiologija 5, 73–79 (1950).Google Scholar
  22. Bernard, N.: Recherches expérimentales sur les Orchidées. Rév. gen. Bot. 16, 405–479 (1904).Google Scholar
  23. Bernard, N.: Sur la fonction fungicide des bulbes d’Ophrydées. Ann. Sci. nat. 14, 221–234 (1911).Google Scholar
  24. Biale, J. B.: Effect of emanations from several species of fungi on respiration and color development of citrus fruits. Science 91, 458–459 (1940).PubMedGoogle Scholar
  25. Biale, J. B.: Respiration in citrus fruits in relation to metabolism of fungi. Proc. Amer. Soc. hort. Sci. 52, 187–191 (1948).Google Scholar
  26. Biale, J. B.: Postharvest physiology and biochemistry of fruits. Annual Rev. Plant Physiol. 1, 183–206 (1950).Google Scholar
  27. Biale, J. B., and A.D. Shepherd: Respiration of citrus fruits in relation to metabolism of fungi. Amer. J. Bot. 28, 263–270 (1941).Google Scholar
  28. Biale, J. B., R. E. Young and A. J. Olmstead: Fruit respiration and ethylene production. Plant Physiol. 29, 168–174 (1954).PubMedGoogle Scholar
  29. Bliss, D. E. : Artificial inoculation of plants with Armillaria mellea. Phytopathology 31, 859 (1941).Google Scholar
  30. Bliss, D. E. : The destruction of Armillaria mellea in citrus soils. Phytopathology 41, 665–683 (1951).Google Scholar
  31. Blumer, S., L. Stalder u. A. Harder: Über die gegenseitigen Beziehungen zwischen Gurkenmosaik und Gurkenmehltau. Phytopath. Z. 25, 39–54 (1955/56)Google Scholar
  32. Bode, H. R. : Über die Blattausscheidungen des Wermuts und ihre Wirkung auf andere Pflanzen. Planta (Berl.) 30, 567–589 (1940).Google Scholar
  33. Börner, H.: Die Abgabe organischer Verbindungen aus den Karyopsen, Wurzeln und Ernterückständen von Roggen, Weizen und Gerste und ihre Bedeutung bei der gegenseitigen Beeinflussung der höheren Pflanzen. Beitr. Biol. Pflanz. 33, 33–83 (1957).Google Scholar
  34. Bohne, H., u. J. Garvert: Untersuchungen über die Bedeutung der Ernterückstände des Getreides für die Humusversorgung. Z. Pflanzenernähr., Düng. Bodenkunde 55, 170–178 (1951).Google Scholar
  35. Bond, G.: Excretion of nitrogenous substances from leguminous root nodules: Observations on Soya bean. Ann. Bot. (Lond.) 2, 61–74 (1938).Google Scholar
  36. Bonde, E. K., and A. K. Khudairi: Further experiments with a growth inhibitor extracted from Xanthium leaves. Physiol. Plantarum (Cph.) 7, 66–71 (1954).Google Scholar
  37. Bonner, J.: Relation of toxic substances to growth from the culture media of guayule which may inhibit growth. Bot. Gaz. 107, 343–351 (1946).Google Scholar
  38. Bonner, J.: The role of toxic substances in the interaction of higher plants. Bot. Review 16, 51–65 (1950).Google Scholar
  39. Bonner, J., and A. W. Galston: Toxic substances from the culture media of guayule which may inhibit growth. Bot. Gaz. 106, 185–198 (1944).Google Scholar
  40. Borriss, H.: Über das Wesen der wachstumshemmenden Wirkung des Äthylens. Jb. wiss. Bot. 91, 83–119 (1943).Google Scholar
  41. Borsowa, S. A.: Das Verhalten der Phytonzide gegenüber Phytophtora infestans. [Russian.] Sammelbd. Phytonzide. Tomsk 1944. Cited in Tokin 1956.Google Scholar
  42. Botha, P. J. : The parasitism of Alectra vogelii Benth. with special reference to the germination of its seeds. J. S. Afr. Bot. 14, 63–80 (1948).Google Scholar
  43. Botha, P. J. : The germination of the seeds of angiospermous root parasites. I. and II. J. S. Afr. Bot. 16, 23–38 (1950).Google Scholar
  44. Botha, P. J. : The germination of the seeds of angiospermous root parasites. III. and IV. J. S. Afr. Bot. 17, 49–72 (1951).Google Scholar
  45. Botjes, J. O.: Aethyleen als vermoede-lijke oorzaak von de groeiremmende werking van rijpe appels. Plantenziek. 39, 207–211 (1933).Google Scholar
  46. Braun, A. J.: The mechanism of action of a bacterial toxin on plant cells. Proc. nat. Acad. Sci. (Wash.) 36, 423–427 (1950).Google Scholar
  47. Brian, P. W.: Antibiotics produced by fungi. Bot. Review 17, 357–430 (1951).Google Scholar
  48. Brian, P. W., P. J. Curtis, H. G. Hemming, C. H. Unwin and J. M. Wright : Alternaric acid, a biologically active metabolic product of the fungus Alternaria solani. Nature (Lond.) 164, 534–535 (1949).Google Scholar
  49. Brian, P. W., and H. G. Hemming: Gliotoxin a fungistatic metabolic product of Trichoderma viride. Ann. appl. Bot. 32, 214–220 (1945).Google Scholar
  50. Brian, P. W., and H. G. Hemming: Production of antifungal and antibacterial substances by fungi. J. gen. Microbiol. 1, 158–167 (1947).PubMedGoogle Scholar
  51. Brian, P. W., and J.M. Wright: An antifungal and phytotoxic metabolic product of the plant pathogenic fungus Alternaria solani. Proc. 7th Intern. Bot. Congr. Stockholm 1950, S. 447–448.Google Scholar
  52. Bronsart, H. V. : Der heutige Stand unseres Wissens von der Bodenmüdigkeit. Z. Pflanzenernähr., Düng. Bodenk. 45, 166–193 (1949).Google Scholar
  53. Brown, H. S., and F. T. Addicott: The anatomy of experimental leaflet abscission in Phaseolus vulgaris. Amer. J. Bot. 37, 650–656 (1950).Google Scholar
  54. Brown, R.: Biological stimulation in germination. Nature (Lond.) 157, 64 (1946).Google Scholar
  55. Brown, R., and M. Edwards : The germination of the seed of Striga lutea. I. Host influence and the progress of germination. Ann. Bot. (Lond.) 8, 131–148 (1944).Google Scholar
  56. Brown, R., and M. Edwards : The germination of the seed of Striga lutea. II. The effect of time of treatment and the concentration of the host stimulant. Ann. Bot. (Lond.) 9, 133–142 (1946).Google Scholar
  57. Brown, R., A. D. Greenwood, A. W. Johnson and A. G. Long: The stimulant involved in the germination of Orobanche minor. I. Assay technique and bulk preparation of the stimulant. Biochem. J. 48, 559–564 (1951).PubMedGoogle Scholar
  58. Brown, R., A. D. Greenwood, A. W. Johnson, A. G. Long and G. J. Tyler: The stimulant involved in the germination of Orobanche minor. II. Chromatographic purification of crude concentrate. Biochem. J. 48, 564–568 (1951).PubMedGoogle Scholar
  59. Brown, R., A. W. Johnson, E. Robinson and A. R. Todd: The stimulant involved in the germination of Striga hermonthica. Proc. roy. Soc. B 136, 1–12 (1949/50).Google Scholar
  60. Brown, R, A. W. Johnson, E. Robinson and G. J. Tyler: The Striga germination factor. Biochem. J. 50, 596–600 (1952).PubMedGoogle Scholar
  61. Brown, R., and E. Robinson: Effect of the Striga germination stimulant on the respiration of Striga seeds. Nature (Lond.) 164, 1057 (1949).Google Scholar
  62. Brown, R., E. Robinson and A. W. Johnson: Effect of the Striga germination stimulant on extension growth on the roots of peas. Nature (Lond.) 163, 842–843 (1949).Google Scholar
  63. Brown, R., E. Robinson and A. W. Johnson: The effects of D-xyloketose and certain root exudates in extension growth. Proc. roy. Soc. B 136, 577–591 (1949/50).Google Scholar
  64. Brown, W.: Studies in the physiology of parasitism. III. On the relation between the “infection drop” and the underlying host tissue. Ann. Bot. (Lond.) 30, 399–406 (1916).Google Scholar
  65. Brown, W.: Studies in the physiology of parasitism. VIII. On the exosmosis of nutrient substances from the host tissue into the infection drop. Ann. Bot. (Lond.) 36, 101–119 (1922a).Google Scholar
  66. Brown, W.: Studies in the physiology of parasitism. IX. The effect on the germination of fungal spores of volatile substances arising from plant tissues. Ann. Bot. (Lond.) 36, 285–300 (1922b).Google Scholar
  67. Brown, W.: The physiology of host-parasite relations. Bot. Review 2, 236–281 (1936).Google Scholar
  68. Brown, W.: On the physiology of parasitism in plants. Ann. appl. Biol. 43, 325–341 (1955).Google Scholar
  69. Bublitz, W.: Über die keimhemmende Wirkung der Eichenstreu. Naturwiss. 40, 275–276 (1953).Google Scholar
  70. Burg, S. P., and K. V. Thimann: The physiology of ethylene formation in apples. Proc. nat. Acad. Sci. (Wash.) 45, 335–344 (1959).Google Scholar
  71. Burgeff, H.: Pflanzliche Avitaminose und ihre Behebung durch Vitaminzufuhr. Ber. dtsch. bot. Ges. 52, 384–390 (1934).Google Scholar
  72. Burgeff, H.: Samenkeimung der Orchideen. Jena 1936.Google Scholar
  73. Burrows, V. D.: Race-specific inhibition of rust uredospores by wheat seedling exudates. Unpublished data 1958.Google Scholar
  74. Cappelleti, C.: Osservazioni sulla germinazione asimbiotica e simbiotica di alcune orchidee. Nuovo Giorn. bot. ital. 42, 436–457 (1935).Google Scholar
  75. Cavallito, Ch. J., and J. H. Bailey: Allicin, the antibacterial principle of Allium sativum. I. J. Amer. chem. Soc. 66, 1950–1951 (1944).Google Scholar
  76. Cavallito, Ch. J., J. S. Duck and C.M. Suter: Allicin, the antibacterial principle of Allium sativum. II. and III. J. Amer. chem. Soc. 66, 1952–1954 (1944)Google Scholar
  77. Cavallito, Ch. J., J. S. Duck and C.M. Suter: Allicin, the antibacterial principle of Allium sativum. II. and III. J. Amer. chem. Soc. 67, 1032 (1945).Google Scholar
  78. Chabrolin, Ch.: Contribution à l’étude de la germination des graines de l’Orobanche de la fève. Ann. Serv. bot. et agron. Tunisie 1937/38, 14–15, 91–144 (1939).Google Scholar
  79. Chace, E. M., and C. G. Church: Effect of ethylene on the composition and color of fruits. Industr. Eng. Chem. 19, 1135–1139 (1927).Google Scholar
  80. Chace, E. M., and F. E. Denny: Use of ethylene in the colouring of citrus fruit. Industr. Eng. Chem. 16, 339–340 (1924).Google Scholar
  81. Cholodny, N. : On the secretion of volatile organic compounds by living organisms and their absorption by the microbes of the soil. [Russian.] Proc. (Doklady) Acad. Sci. USSR. 41, 9 (1934)Google Scholar
  82. Cholodny, N. : On the secretion of volatile organic compounds by living organisms and their absorption by the microbes of the soil. [Russian.] Proc. (Doklady) Acad. Sci. USSR. 43, 26 (1944).Google Scholar
  83. Christensen, J. J., and J. E. Devay: Adaptation of plant pathogen to host. Annual Rev. Plant Physiol. 6, 367–392 (1955).Google Scholar
  84. Clark, F. E.: Notes on types of bacteria associated with plant roots. Trans. Kan. Acad. Sci. 43, 75–84 (1940).Google Scholar
  85. Clauson-Kaas, N., P. A. Plattner u. E. Gäumann: Über ein welkeerzeugendes Stoffwechselprodukt von Fusarium lycopersici Sacc. Ber. Schweiz, bot. Ges. 54, 523–528 (1944).Google Scholar
  86. Cochrane, V. W. : The role of plant residues in the etiology of root rot. Phytopathology 38, 185–196 (1948).Google Scholar
  87. Coley, J. R., J. R. Smith and C. J. Hickman: Stimulation of Sclerotium germination in Sclerotium cepivorum. Nature (Lond.) 180, 445 (1957).Google Scholar
  88. Crocker, W., A. E. Hitchcock and P.W. Zimmerman: Similarities in the effects of ethylene and the plant auxins. Contr. Boyce Thompson Inst. 7, 231–248 (1935).Google Scholar
  89. Crocker, W., L. I. Knight and R. C. Rose: A delicate seedling test. Science 37, 380–381 (1913).Google Scholar
  90. Crocker, W., P. W. Zimmerman and A.E. Hitchcock: Ethylene induced epinasty of leaves and the relation of gravity to it. Contr. Boyce Thompson Inst. 4, 177–218 (1932).Google Scholar
  91. Curtis, J. T.: The relation of specificity of orchid mycorrhizal fungi to the problem of symbiosis. Amer. J. Bot. 26, 390–399 (1939).Google Scholar
  92. Curtis, R. W.: Survey of fungi and actinomycetes for compounds possessing gibberellic like activity. Science 125, 646 (1957 a).Google Scholar
  93. Curtis, R. W.: Translocatable plant growth inhibitors produced by Penicillium thomii and Arachniotus trisporus. Plant Physiol. 32, 56–59 (1957 b).PubMedGoogle Scholar
  94. Curtis, R. W.: Curvatures and malformation in bean plants caused by culture filtrate of Aspergillus niger. Plant Physiol. 33, 17–22 (1958).PubMedGoogle Scholar
  95. Dalbro, S.: Leaching of nutrients from apple foliage. Rept. 14th Internat, hortic. Congr. (Paris) 1955, pp. 770–778.Google Scholar
  96. Davis, D.: The use of intergeneric grafts to demonstrate toxins in the Fusarium wilt disease of tomato. Amer. J. Bot. 41, 395–398 (1954).Google Scholar
  97. Davis, W. B., and C. G. Church: The effect of ethylene on the chemical composition and the respiration of the ripening Japanese persimmon. J. agric. Res. 42, 165–182 (1931).Google Scholar
  98. Dean, F. M. : Naturally occuring coumarins. Fortschr. Chem. org. Naturstoffe 9, 226–291 (1952).Google Scholar
  99. De Candolle, A.: Physiologie végétale 1832.Google Scholar
  100. Dehay, Ch., et M. Carré: Étude de la composition de quelques excrétions radicellaires. C. R. Acad. Sci. (Paris) 244, 230–233 (1957).Google Scholar
  101. Deleuil, G.: Mise en évidence de substances toxiques pour les thérophytes dans les association du Rosmarino-Ericion. C. R. Acad. Sci. (Paris) 230, 1362–1364 (1950).Google Scholar
  102. Deleuil, G.: Explication de la présence de certains thérophytes rencontrés parfois dans les associations du Rosmarino-Ericion. C., R. Acad. Sci. (Paris) 232, 2476–2477 (1951a).Google Scholar
  103. Deleuil, G.: Origine des substances toxiques du sol des associations sans thérophytes du Rosmarino-Ericion. C. R. Acad. Sci. (Paris) 232, 2038–2039 (1951b).Google Scholar
  104. Deleuil, G.: Action réciproque et interspécifique des substances toxiques radiculaires. C. R. Acad. Sci. (Paris) 238, 2185–2186 (1954).Google Scholar
  105. Demolon, A. : Principes d’agronomie. Tome II. Croissance des végétaux cultivés. Paris: Dunod 1956.Google Scholar
  106. Denffer, D. v. : Über einen Wachstumshemmstoff in alternden Diatomeenkulturen. Biol. Zbl. 67, 7–13 (1948).Google Scholar
  107. Denny, F. E.: Hastening the coloration of lemons. J. agric. Res. 27, 757–768 (1924a).Google Scholar
  108. Denny, F. E.: Effect of ethylene upon respiration of lemons. Bot. Gaz. 77, 322–329 (1924 b).Google Scholar
  109. Denny, F. E.: Testing plant tissue for emanation causing leaf epinasty. Contr. Boyce Thompson Inst. 7, 341–347 (1935).Google Scholar
  110. Denny, F. E.: Gravity position of tomato stems and their production of the emanation causing leaf epinasty. Contr. Boyce Thompson Inst. 8, 99–104 (1936/37).Google Scholar
  111. Denny, F. E.: Leaf epinasty tests with volatile products from seedlings. Contr. Boyce Thompson Inst. 9, 431–438 (1937/38).Google Scholar
  112. Denny, F. E.: Leaf epinasty tests with chemical vapors. Contr. Boyce Thompson Inst. 10, 191–195 (1938/39).Google Scholar
  113. Denny, F. E., and L. P. Miller: Production of ethylene by plant tissue as indicated by the epinastic response of leaves. Contr. Boyce Thompson Inst. 7, 97–102 (1935).Google Scholar
  114. Dimond, A. E.: Pathogenesis in the wilt disease. Annual Rev. Plant Physiol. 6, 329–350 (1955).Google Scholar
  115. Dimond, A. E., and P. E. Waggoner: The cause of epinastic symptoms in Fusarium wilt of tomatoes. Phytopathology 43, 663–668 (1953 a).Google Scholar
  116. Dimond, A. E., and P. E. Waggoner: On the nature of vivotoxins in the plant disease. Phytopathology 43, 229–235 (1953 b).Google Scholar
  117. Dinoor, A.: The effect of the valonia oak Quercus ithaburensis on the vegetation of natural pasture in open forests. Bull. Res. Council Israel, Sect. D, Botany (in press, 1960).Google Scholar
  118. Dostal, R.: Untersuchungen zur Analyse der Wirkung der Laboratoriumsluft und anderer Gase auf die Keimlinge von Pisum sativum unter Berücksichtigung der Wuchsstofftheorie. Jb. wiss. Bot. 90, 199–232 (1942).Google Scholar
  119. Doubt, S. L.: The response of plants to illuminating gas. Bot. Gaz. 63, 209–224 (1917).Google Scholar
  120. Downie, D. G.: On the germination and growth of Goodyera repens. Trans, bot. Soc. Edinb. 33, (1), 36–51 (1940).Google Scholar
  121. Downie, D. G.: Notes on the germination of Corrallorhiza innata. Trans, bot. Soc. Edinb. 33, (4), 360–382 (1943).Google Scholar
  122. Dufrenoy, J.: The use of ethylene for the ripening of tropical fruit. Rev. Bot. Appl. Agr. Trop. Bull. 95, 441–443 (1929).Google Scholar
  123. Eberhardt, F.: Der Atmungsverlauf alternder Blätter und reifender Früchte. Planta (Berl.) 45, 57–67 (1955 a).Google Scholar
  124. Eberhardt, F.: Über fluoreszierende Verbindungen in der Wurzel des Hafers. Ein Beitrag zum Problem der Wurzelausscheidungen. Z. Bot. 43, 405–422 (1955 b).Google Scholar
  125. Eberhardt, F., u. P. Martin: Das Problem der Wurzelausscheidungen und seine Bedeutung für die gegenseitige Beeinflussung höherer Pflanzen. Z. Pflanzenkrkh. u. Pflanzenschutz 64, 193–205 (1957).Google Scholar
  126. Elmer, O. H.: Growth inhibition of potato sprouts by the volatile products of apples. Science 75, 193 (1932).PubMedGoogle Scholar
  127. Engel, H.: Das Verhalten der Blätter bei Benetzung mit Wasser. Jb. wiss. Bot. 88, 816–861 (1939).Google Scholar
  128. Erdtman, H.: Chemistry of some heartwood constituents of conifers and their physiological and taxonomie significance. Progr. Organ. Chem., London 1952, pp.22–63.Google Scholar
  129. Erdtman, H., and J. Gripenberg: Antibiotic substances from the heartwood of Thuja plicata D. II. The constitution of γ-thujaplicin. Acta chem. scand. 2, 625–638 (1948).PubMedGoogle Scholar
  130. Evans, E., and D. Gottlieb: The role of gliotoxin in the soil. Phytopathology 42, 465–466 (1952).Google Scholar
  131. Evenari, M. : Algunas observa-ciones sobre inhibidores de la germinacion. Bol. Soc. argent. Bot. 3, 21–30 (1949 a).Google Scholar
  132. Evenari, M. : Germination inhibitors. Bot. Review 15, 153–194 (1949b).Google Scholar
  133. Fernando, M., and G. Stevenson: Studies on the physiology of parasitism. XVI. Effect of the condition of potato tissue as modified by temperature and water content upon attack by certain organisms and their pectinase enzymes. Ann. Bot. (Lond.) 16, 103–114 (1952).Google Scholar
  134. Focke, W. O.: Schutzmittel der Pflanze gegen niedere Pilze. Kosmos 10, 414 (1881/82).Google Scholar
  135. Förster, R. : Über den Einfluß von Gerbstoffen auf Keimung und Wachstum von höheren Pflanzen. Beitr. Biol. Pflanz. 33, 279–311 (1957).Google Scholar
  136. Fontaine, Th. D., G. W. Irving Jr., R. Ma, J. B. Poole and S. B. Doolittle: Isolation and partial characterisation of crystalline tomatine, an antibiotic agent from the tomato plant. Arch. Biochem. 18, 467–475 (1948).PubMedGoogle Scholar
  137. Froeschel, P., and G.L. Funke: An essay of experimental plant sociology. [Flemish.] Natuurwet. Tijdschr. 21, 348–355 (1939).Google Scholar
  138. Funke, G. L.: The influence of Artemisia absinthium on neighbouring plants. Blumea (Leiden) 5, 281–293 (1943).Google Scholar
  139. Fushtey, S. G.: Studies in the physiology of parasitism. XXIV. Further experiments on the killing of plant cells by fungal and bacterial extracts. Ann. Bot. (Lond.) 21, 273–286 (1957).Google Scholar
  140. Gäumann, E.: Pflanzliche Infektionslehre, 2. Aufl. Basel: Birkhäuser 1951.Google Scholar
  141. Gäumann, E.: Über Fusarinsäure als Welketoxin. Phytopath. Z. 29, 1–44 (1957 a).Google Scholar
  142. Gäumann, E.: Fusaric acid as a wilt toxin. Phytopathology 47, 342–357 (1957b).Google Scholar
  143. Gäumann, E.: Über die Wirkungsmechanismen der Fusarinsäure. Phytopath. Z. 32, 359–398 (1958).Google Scholar
  144. Gäumann, E., R. Braun u. G. Bazzigher: Über induzierte Abwehrreaktionen bei Orchideen. Phytopath. Z. 17, 36–62 (1950).Google Scholar
  145. Gäumann, E., u. O. Jaag: Über induzierte Abwehrreaktionen bei Pflanzen. Experientia (Basel) 1, 21–22 (1945).Google Scholar
  146. Gäumann, E., u. H. Kern: Über die Isolierung und den chemischen Nachweis des Orchinols. Phytopath. Z. 35, 347–356 (1959a).Google Scholar
  147. Gäumann, E., u. H. Kern: Über chemische Abwehrreaktionen bei Orchideen. Phytopath. Z. 36, 1–26 (1959b).Google Scholar
  148. Gäumann, E., u. H. Kern: Sur les réactions de défense chimiques chez les Orchidées. C. R. Acad. Sci. (Paris) 248, 2542–2544 (1959c).Google Scholar
  149. Gäumann, E., H. Kern u. W. Obrist: Der Einfluß einiger Welketoxine auf den Wasserhaushalt abgeschnittener Tomatensprosse. Phytopath. Z. 36, 111–121 (1959).Google Scholar
  150. Gäumann, E., u. W. Loeffler: Über die Wirkung von Fusarinsäure auf die Wasserpermeabilität der Markzellen von Tomatenpflanzen. Phytopath. Z. 28, 319–328 (1956/57).Google Scholar
  151. Gäumann, E., u. St. Naef-Roth: Über Lycomarasminsäure, ein Umwandlungsprodukt des Lycomarasmins. Phytopath. Z. 34, 426–431 (1959).Google Scholar
  152. Gäumann, E., S. Naef-Roth et H. Kobel: L’acide fusarique, une toxine de fletrissement produite par Fusarium lycopersici. C. R. Acad. Sci. (Paris) 234, 173 (1952 a).Google Scholar
  153. Gäumann, E., S. Naef-Roth et H. Kobel: Über Fusarinsäure, ein zweites Welketoxin des Fusarium lycopersici Sacc. Phytopath. Z. 20, 1–38 (1952b).Google Scholar
  154. Gäumann, E., S. Naef-Roth u. G. Miescher: Untersuchungen über das Lycomarasmin. Phytopath. Z. 16, 257–288 (1950).Google Scholar
  155. Gäumann, E., Ch. Stoll u. H. Kern: Über Vasinfuscarin, ein drittes Welketoxin des Fusarium lycopersici Sacc. Phytopath. Z. 20, 345–347 (1953).Google Scholar
  156. Gane, R.: Production of ethylene by some ripening fruits. Nature (Lond.) 134, 1008 (1934).Google Scholar
  157. Gane, R.: The respiration of bananas in presence of ethylene. New Phytologist 36, 170–178 (1937).Google Scholar
  158. Garrett, S. D.: Biology of root infecting fungi. Cambridge University Press 1956.Google Scholar
  159. Gawadi, A. G., and G. S. Avery: Leaf abscission and the so called “abscission layer”. Amer. J. Bot. 37, 172–180 (1950).Google Scholar
  160. Gentile, A. C. : A study of the toxin produced by an isolate of Botrytis cinerea from Exochorda. Physiol. Plantarum (Cph.) 4, 370–386 (1951).Google Scholar
  161. Golomjodowa, T. I.: Über gegenseitige toxische Beeinflussung der Pflanzen durch ihre wäßrigen Auszüge. [Russian.] Agrobiologija 2, 132–134 (1952).Google Scholar
  162. Gothoskar, S. S., R. P. Scheffer, J. C. Walker and M. A. Stahmann : The role of pectic enzymes in Fusarium wilt of tomato. Phytopathology 43, 535–536 (1953).Google Scholar
  163. Gray, R., and J. Bonner: An inhibitor of plant growth from the leaves of Encelia farinosa. Amer. J. Bot. 35, 52–57 (1948 a).Google Scholar
  164. Gray, R., and J. Bonner: Structure determination and synthesis of a plant growth inhibitor 3-acetyl-6-methoxybenzaldehyde found in the leaves of Encelia farinosa. J. Amer. chem. Soc. 70, 1249–1253 (1948b).Google Scholar
  165. Greaney, F. J., and J. E. Machacek : Studies on the control of root rot diseases of cereals caused by Fusarium culmorum and Helminthosporium sativum; pathogenicity of Helminthosporium sativum as influenced by Cephalothecium roseum in greenhouse pot tests. Sci. Agric. 15, 377–386 (1935).Google Scholar
  166. Greathouse, G. A.: Suggested role of alkaloids in plants resistant to Phymato-trichum omnivorum. Phytopathology 28, 592–593 (1938).Google Scholar
  167. Greathouse, G. A.: Alkaloids from Sanguinaria canadensis and their influence on growth of Phymatotrichum omnivorum. Plant Physiol. 14, 377–380 (1939).PubMedGoogle Scholar
  168. Greathouse, G. A., and N. E. Rigler: Alkaloids from Zephyranthes texana, Cooperia pedunculata and other Amaryllidaceae and their toxicity to Phymatotrichum omnivorum. Amer. J. Bot. 28, 702–704 (1941).Google Scholar
  169. Greathouse, G. A., and G. M. Watkins: Berberine as a factor in the resistance of Mahonia trifoliata and M. Swasleyi to Phymatotrichum root rot. Amer. J. Bot. 25, 743–748 (1938).Google Scholar
  170. Gregory, K. E., O. N. Allen, A. J. Riker and W.H. Patterson: Antibiotics and antagonistic microorganisms as control agents against damping-off of alfalfa. Phytopathology 42, 613–622 (1952).Google Scholar
  171. Grieve, B. J.: Epinastic response induced in plants by Bacterium solanacearum. Ann. Bot. (Lond.) 2, 587 (1939).Google Scholar
  172. Grieve, B. J.: Studies in the physiology of host-parasite relations. II. Adventitious root formation. Proc. roy. Soc. Victoria 53, 323 (1941).Google Scholar
  173. Gripenberg, J.: Antibiotic substances from the heartwood of Thuja plicata D. III. The constitution of α-thujaplicin. Acta chem. scand. 2, 639–643 (1948).PubMedGoogle Scholar
  174. Gripenberg, J., and A. B. Anderson: Antibiotic substances from the heartwood of Thuja plicata D. IV. The constitution of β-thujaplicin. Acta chem. scand. 2, 644–650 (1948).PubMedGoogle Scholar
  175. Grümmer, G.: Die gegenseitige Beeinflussung höhere Pflanzen-Allelopathie. Jena: Gustav Fischer 1955.Google Scholar
  176. Grümmer, G.: Neuere Erkenntnisse über die gegenseitige Beeinflussung höherer Pflanzen. Wiss. Z. Univ. Greifswald 6, 245–250 (1956/57).Google Scholar
  177. Grümmer, G.: Die Beeinflussung des Leinertrags durch Camelina-Arten. Flora (Jena) 146, 158–177 (1958).Google Scholar
  178. Guttenberg, H. v., u. E. Steinmetz: Der Einfluß des Äthylens auf Wuchsstoff und Wachstum. Pharmazie 2, 17–21 (1947).Google Scholar
  179. Gtjyot, L.: Les excrétions racinaires chez les végétaux. Bull, techn. Inform. Min. Agrie. 59, 1–15 (1951).Google Scholar
  180. Guyot, L., et M. Massenot: Sur la persistance prolongée des semences dormantes dans le sol de la pelouse herbeuse à Brachypodium pinnatum du Nord de la France. C. R. Acad. Sci. (Paris) 230, 1894–1896 (1950).Google Scholar
  181. Guyot, L., et J. Montégut: Sur l’effet fongostatic sélectif de l’extrait aqueu de poudre de sommités fleuries d’Hellébore. C. R. Acad. Sci. (Paris) 237, 200–202 (1953).Google Scholar
  182. Gyllenberg, H.: The “rhizosphere effect” of graminaceous plants in virgin soil. Physiol. Plantarum (Cph.) 8, 644–652 (1955).Google Scholar
  183. The “rhizosphere effect” of graminaceous plants in virgin soils. II. Physiol. Plantarum (Cph.) 9, 119–129 (1956).Google Scholar
  184. Gyllenberg, H., and P. Hanioja: The “rhizosphere effect” of graminaceous plants in virgin soil. III. Physiol. Plantarum (Cph.) 9, 441–445 (1956).Google Scholar
  185. Gyllenberg, H., P. Hanioja and U. Vartiovaara: Observations on the composition of the microbial population in some virgin soils. Acta forest, fenn. 62, 1–12 (1954).Google Scholar
  186. Haenseler, C.M., and M.C. Allen: Toxic action of Trichoderma on Rhizoctonia and other soil fungi. Phytopathology 24, 10 (1934).Google Scholar
  187. Hafez, M. G. A.: An analysis of the influence of ethereal oils on transpiration. M. Sc. thesis, Cairo Univ. 1939.Google Scholar
  188. Effects of some essential oil vapours on transpiration and absorption by Eupatorium and Mentha, Proc. Sci. Arab. Congr. 3 (1957).Google Scholar
  189. Hafez, M. G. A.: Effects of some essential oil vapors on the stomata of Eupatorium and Mentha. Plant Physiol. 33, 177–181 (1958 a).PubMedGoogle Scholar
  190. Hafez, M. G. A.: Effects of rosemary and thyme oil vapors on the stomata of cherry laurel. Plant Physiol. 33, 181–185 (1958b).PubMedGoogle Scholar
  191. Halbeisen, Th. : Untersuchungen des antibiotischen Wirkstoffs einer höheren Pflanze. (Tropeaolum majus-Kapuzmerkresse.) Medizinische 1954, 1212–1215.Google Scholar
  192. Hall, W. C. : Studies on the origin of ethylene from plant tissues. Bot. Gaz. 113, 55–65 (1952a).Google Scholar
  193. Hall, W. C. : Evidence on the auxin-ethylene balance hypothesis of foliar abscission. Bot. Gaz. 113, 310–323 (1952b).Google Scholar
  194. Hall, W. C., G. B. Truchelut, C. L. Leinweber and F. A. Herrero: Ethylene production by the cotton plant and its effects under experimental and field conditions. Physiol. Plantarum (Cph.) 10, 306–317 (1957).Google Scholar
  195. Hansen, E.: Effect of ethylene on certain chemical changes associated with the ripening of pears. Plant Physiol. 14, 145–161 (1939).PubMedGoogle Scholar
  196. Hansen, E.: Quantitative study of ethylene production in relation to respiration of pears. Bot. Gaz. 103, 543–558 (1942).Google Scholar
  197. Hansen, E.: Quantitative study of ethylene production in apple varieties. Plant Physiol. 20, 631–635 (1945).PubMedGoogle Scholar
  198. Hansen, E., and B. E. Christensen: Chemical determination of ethylene in the emanations from apples and pears. Bot. Gaz. 101, 403–409 (1939).Google Scholar
  199. Hansen, E., and H. Hartman: Effect of ethylene and certain metabolic gases upon respiration and ripening of pears before and after cold storage. Plant Physiol. 12, 441–454 (1937).PubMedGoogle Scholar
  200. Harder, R.: Ernährungsphysiologische Untersuchungen an Cyanophyceen, hauptsächlich dem endophytischen Nostoc punctiforme. Z. Bot. 9, 145–242 (1917).Google Scholar
  201. Harvey, E. M.: The castor bean plant and laboratory air. Bot. Gaz. 56, 439–442 (1913).Google Scholar
  202. Harvey, E. M.: Some effects of ethylene on the metabolism of plants. Bot. Gaz. 60, 193–214 (1915).Google Scholar
  203. Harvey, R. B.: A new method of blanching celery. Minnesota Hort. 53, 41 (1925).Google Scholar
  204. Hatfield, W. C., J. C. Walker and J. H. Owen: Antibiotic substances in onion in relation to disease resistance. J. agric. Res. 77, 115–135 (1948).Google Scholar
  205. Heilbronn, A.: Über die ökologische Bedeutung der ätherischen Öle. Proc. 7th Intern. Bot. Congr. Stockholm 1950, S. 232.Google Scholar
  206. Heller, A. : Über die Wirkung ätherischer Öle und einiger verwandter Körper auf die Pflanze. Flora (Jena) 93, 1–34 (1904).Google Scholar
  207. Herklots, G. A. C.: Ph. D. thesis Univ. Cambridge 1928. Cited in Huelin and Barker 1939.Google Scholar
  208. Hibbard, R. P. : The physiological effect of ethylene gas upon celery, tomatoes and certain fruits. Bull. Mich, agric. Exp. Stat. 104 (1930).Google Scholar
  209. Höhn, K., u. A. Elfert: Die Wirkung ätherischer Öle auf Transpiration, Guttation und Wachstum von Hafer. Beitr. Biol. Pflanz. 33, 1–16 (1957).Google Scholar
  210. Hohenstatter,E.: Untersuchungen über den Einfluß des Äthylens auf Lebensvorgänge in der Pflanze. Beih. bot. Zbl. 61, 83–119 (1942).Google Scholar
  211. Huelin, F. E. : Effects of ethylene and of apple vapours on the sprouting of potatoes. Rept. Food investig. Bd. Gr. Britain 1932, 51–53 (1933).Google Scholar
  212. Huelin, F.E., and J. Barker: The effect of ethylene on the respiration and carbohydrate metabolism of potatoes. New Phytologist 38, 85–104 (1939).Google Scholar
  213. Hutchinson, S. A., and M. Fahim: The effects of fungi on the gametophytes of Pteridium aquilinum. Ann. Bot. (Lond.) 22, 117–126 (1958).Google Scholar
  214. Irving, G. W., Th. D. Fontaine and S. P. Doolittle: Lycopersicin a fungistatic agent from the tomato plant. Science 102, 9 (1945).PubMedGoogle Scholar
  215. Irving, G. W., Isaac, W. E.: The evolution of a growth inhibiting emanation from ripening plums and peaches. Trans, roy Soc. S. Africa 26, 307–317 (1938).Google Scholar
  216. Irving, G. W., Isakova, A.A.: On the problem of the nature of the action of bacteriorrhizal microorganisms on plants. [Russian.] C. R. (Doklady) Acad. Sci. USSR. 13, 429–432 (1936).Google Scholar
  217. Irving, G. W., Effect of bacteriorrhizal complex on the development of the sugar beet. [Russian.] C.R. (Doklady) Acad. Sci. USSR. 17, 150–152 (1937).Google Scholar
  218. Jackson, J. M.: Physiology of leaf abscission. Proc. Arkansas Acad. Sci. 5, 73 (1952).Google Scholar
  219. Jackson, J. M.; Jackson, R. M.: Fungistasis as a factor in the rhizosphere phenomenon. Nature (Lond.) 80, 96–97 (1957).Google Scholar
  220. Jackson, J. M.; Johnson, G., and L. A. Schaal: Chlorogenic acid and other ortho-dihydrophenols in scab resistant russet burbank and scab susceptible triumph potato tubers of different maturietis. Phytopathology 47, 253–255 (1957).Google Scholar
  221. Jackson, J. M.; Jorgensen, E. G.: Growth inhibiting substances formed by Algae. Physiol. Plantarum (Cph.) 9, 712–726 (1956).Google Scholar
  222. Kadry, Abd El R., and H. Tewfic: Seed germination in Orobanche crenata Forssk. Svensk, bot. Tidskr. 50, 270–286 (1956).Google Scholar
  223. Kadry, Abd El R., Kalyanasttndaram, R., and C. S. V. Ram: Production and systematic translocation of fusaric acid in Fusarium infected cotton plants. J. Indian bot. Soc. 35,1–70 (1956).Google Scholar
  224. Kadry, Abd El R., Katznelson, H., A. G. Lochhead and M. I. Timonin: Soil microorganisms and the rhizosphere. Bot. Review 14, 543–587 (1948).Google Scholar
  225. Kadry, Abd El R., Katznelson, H. J. W.; Rou A. T. T. and T. M. B. Payne: The liberation of amino acids and reducing compounds by plant roots. Plant and Soil 7, 35–48 (1955).Google Scholar
  226. Kadry, Abd El R., Kern, H.: Über die Beziehungen zwischen dem Alkaloidgehalt verschiedener Tomatensorten und ihrer Resistenz gegen Fusarium lycopersici. Phytopath. Z. 9, 351–382 (1952).Google Scholar
  227. Kadry, Abd El R., Kern, H., u. D. Klüpfel: Der Nachweis von Fusarinsäure in mit Fusarium lycopersici Sacc. infizierten Tomatenpflanzen. Experientia (Basel) 12, 181–182 (1956).Google Scholar
  228. Kadry, Abd El R., Kern, H., u. D. Klüpfel: Untersuchungen über den Stoffwechsel von Fusarium lycopersici mit Hilfe von radioaktivem Kohlenstoff. Phytopath. Z. 22, 449–453 (1954).Google Scholar
  229. Kadry, Abd El R., Khudyiakoff, J. P.: The lytic action of soil bacteria on parasitic fungi. [Russian.] Microbiologija 4, 193–204 (1935).Google Scholar
  230. Kadry, Abd El R., Kidd, F., and C. West: The influence of the composition of the atmosphere upon the incidence of the climacteric in apples. Rept. Food investig. Bd. Gr. Britain 1932, 51–57 (1933).Google Scholar
  231. Kadry, Abd El R., Effect of ethylene on apples at low temperatures. Evidence for the production of ethylene by unripe fruit. Rept. Food investig. Bd. Gr. Britain 1933, 119–122 (1934).Google Scholar
  232. Kadry, Abd El R., Klosa, J.: Über einige die Keimung von Samen und das Wachstum von Bakterien hemmende Substanzen aus Vege-tabilien. Pharmazie 3, 410–413 (1948).Google Scholar
  233. Kadry, Abd El R., Über einige die Keimung von Samen und das Wachstum von Bakterien hemmende Substanzen aus Vegetabilien. Pharmazie 4, 574–578 (1949).Google Scholar
  234. Kadry, Abd El R., Klüpfel, D.: Über die Biosynthese und die Umwandlungen der Fusarinsäure in Tomatenpflanzen. Phytopath. Z. 29, 349–379 (1957).Google Scholar
  235. Kadry, Abd El R., Knapp, R., u. H. F. Linskens: Über Aminosäuren aus der Blattstreu einiger Pflanzenarten von Wäldern. Naturwiss. 41, 480–481 (1954).Google Scholar
  236. Kadry, Abd El R., Knapp, R., u. P. Thyssen: Untersuchungen über die gegenseitige Beeinflussung von Heilpflanzen in Mischkulturen. Ber. dtsch. bot. Ges. 65, 60–70 (1952).Google Scholar
  237. Kadry, Abd El R., Knight, L. I., and W. Crocker: Toxicity of smoke. Bot. Gaz. 55, 337–371 (1913).Google Scholar
  238. Kadry, Abd El R., Knight, L. I., R. C. Rose and W. Crocker: Effect of various gases and vapors upon seedlings of the sweet pea. Science 31, 635–636 (1910).Google Scholar
  239. Kadry, Abd El R., Knttdson, L. : Non-symbiontic germination of orchid seeds. Bot. Gaz. 73, 1–25 (1922).Google Scholar
  240. Kadry, Abd El R., Koeckemann, A.: Über eine keimungs-hemmende Substanz in fleischigen Früchten. Ber. dtsch. bot. Ges. 52, 523–526 (1934).Google Scholar
  241. Kadry, Abd El R., Zur Frage der keimungshemmenden Substanzen in fleischigen Früchten. Beih. bot. Zbl. 55 A, 191–196 (1936).Google Scholar
  242. Kadry, Abd El R., Köves, E., and M. Varga: Growth inhibiting substances in rice-straw. . Acta Univ. Szegedensis, N.S. 4, 13–16 (1958).Google Scholar
  243. Kadry, Abd El R., Kohmann, E. F.: Ethylene treatment of tomatoes. Industr. Eng. Chem. 23,1112–1113 (1931).Google Scholar
  244. Kadry, Abd El R., Kommedahl, T., and T. D. Brock: Studies on the relationship of sou mycoflora to disease incidence. Phytopathology 44, 57–61 (1954).Google Scholar
  245. Kadry, Abd El R., Kouprevitch, V. F.: Action des plantes phanerogames sur le substratum par les ferments dégagés de leurs racines. Essais de Bot. 1, 100–109 (1954) (Acad. Sci. USSR.).Google Scholar
  246. Kadry, Abd El R., Koács, A., u. E. Szeöke: Die phytopathologische Bedeutung der kuti-kulären Exkretion. Phytopath. Z. 27, 335–349 (1956).Google Scholar
  247. Kadry, Abd El R., Krassilnikov, N. A.: Microflora of soils as influenced by plants. [Russian.] Microbiologija 13, 187–198 (1944).Google Scholar
  248. Kadry, Abd El R., Mikroorganismen des Bodens und der Ertrag der Pflanzen. [Russian.] Agrobiologija 2, 49–58 (1949).Google Scholar
  249. Kadry, Abd El R., Krassinsky, N., u. E. D. Andrejewa: Über die Wirkung des Äthylens und des Acetylens auf die Bildung der Wurzeln. Gartenbauwiss. 9, 479–488 (1935).Google Scholar
  250. Kadry, Abd El R., Kropfitsch, M.: Apfelgas-Wirkung auf Anthocyan-Bildung. Phyton (Austria) 3, 108–109 (1951).Google Scholar
  251. Kadry, Abd El R., Ktjester, E.: Über chemische Beeinflussung der Organismen durcheinander. Vortr. und Aufs, über Entwicklungsmechanik der Organismen, Bd. VI, S. 1–25. 1909.Google Scholar
  252. Laan, P. A. van der: Der Einfluß von Äthylen auf die Wuchsstoffbildung bei Avena und Vicia. Rec. Trav. bot. néerl. 31, 691–742 (1934).Google Scholar
  253. Laan, P. A. van der Lakshminarayan, K.: The physiology of host-parasite relationship in the wilt of cotton. Proc. Ind. Acad. Sci. B 42,317 (1956).Google Scholar
  254. Laan, P. A. van der In vivo detection of pectin methyl esterase in the Fusarium wilt of cotton. Naturwiss. 44, 93 (1957 a).Google Scholar
  255. Laan, P. A. van der Adaptive nature of pectin methyl esterase formation by Fusarium vasinfectum. Physiol. Plantarum (Cph.) 10, 877–881 (1957b).Google Scholar
  256. Laan, P. A. van der; Lakshminarayan, K., and D. Stjbramanian: Is fusaric acid a vivotoxin? Nature (Lond.) 176, 697–698 (1955).Google Scholar
  257. Laan, P. A. van der Lapwood, D. H. : Studies in the physiology of parasitism. XXIII. On the parasitic vigour of certain bacteria in relation to their capacity to secrete pectolytic enzymes. Ann. Bot. (Lond.) 21, 167–184 (1957).Google Scholar
  258. Laan, P. A. van der Lausberg, Th.: Quantitative Untersuchungen über die kutikuläre Exkretion des Laubblattes. Jb. wiss. Bot. 81, 768–806 (1935).Google Scholar
  259. Laan, P. A. van der; Lebeatj, J. B., and J. G. Dickson : Preliminary report on production of hydrogen cyanide by a snow mold pathogen. Phytopathology 43, 581–582 (1953).Google Scholar
  260. Laan, P. A. van der Ledingham, R. J.: Observations on antagonism in inoculation tests of wheat with Helminthosporium sativum and Fusarium culmorum. Sci. Agric. 22, 688–697 (1942).Google Scholar
  261. Laan, P. A. van der; Lefèvre, H., et H. Jacob: Sur quelques propriétés des substances actives tirées des cultures d’algues d’eau douce. C. R. Acad. Sci. (Paris) 229, 234 (1949).Google Scholar
  262. Laan, P. A. van der; Lefèvre, M., H. Jakob et M. Nisbet: Compatibilités et antagonismes entre algues d’eau douce dans les collections d’eau naturelles. Verh. intern. Ver. Limnol. 11, 224–229 (1951).Google Scholar
  263. Laan, P. A. van der Levisohn, I.: Growth response of tree seedlings to mycorrhizal mycelia in the absence of a mycorrhizal association. Nature (Lond.) 172, 316 (1953).Google Scholar
  264. Laan, P. A. van der Growth stimulation of forest tree seedlings by the activity of free-living mycorrhizal mycelia. Forestry 29, 53–59 (1956).Google Scholar
  265. Laan, P. A. van der Effects of mycorrhiza on tree growth. Soils and Fert. 21, 73–82 (1958).Google Scholar
  266. Laan, P. A. van der; Levring, T.: Some culture experiments with marine plankton diatoms. Göteborgs Kungl. Vetensk. Handl. 3, 12 (1945).Google Scholar
  267. Laan, P. A. van der; Link, K. P., H. R. Angell and J. C. Walker: The isolation of protocatechuic acid from pigmented onion scales and its significance in relation to disease resistance in onions. J. biol. Chem. 81, 369–375 (1929).Google Scholar
  268. Laan, P. A. van der; Link, K. P., and J. C. Walker: The isolation of catechol from pigmented onion scales and its significance in relation to disease resistance in onions. J. biol. Chem. 100, 379–383 (1933).Google Scholar
  269. Laan, P. A. van der; Linskens, H. F.; R. Knapp: Über die Ausscheidung von Aminosäuren in reinen und gemischten Beständen verschiedener Pflanzenarten. Planta (Berl.) 45, 106–117 (1955).Google Scholar
  270. Laan, P. A. van der Livingston, G. A.: In vitro tests of abscission agents. Plant Physiol. 25, 711–721 (1950).Google Scholar
  271. Laan, P. A. van der Lochhead, A. G. : Qualitative studies of soil microorganisms. III. Influence of plant growth on the character of the bacterial flora. Canad. J. Res. C 18, 42–53 (1940).Google Scholar
  272. Laan, P. A. van der; Lochhead, A. G., and R. H. Thexton: Qualitative studies of soil microorganisms. VII. The rhizo-sphere effect in relation to the amino acid nutrition of bacteria. Canad. J. Res. C 25, 20–26 (1947).Google Scholar
  273. Laan, P. A. van der: Qualitative studies of soil microorganisms. X. Bacteria requiring vitamin B12 as growth factor. J. Bact. 63, 219 (1952).Google Scholar
  274. Laan, P. A. van der Loehwtng, W. F.: Root interaction of plants. Bot. Review 3, 195–239 (1937).Google Scholar
  275. Laan, P. A. van der; Lucas, E. H., R. W. Lewis and H. M. Sell: An antibiotic principle derived from seeds of Brassica oleracea. Bull. Mich, agric. Exp. Stat. 29, 1–3 (1946).Google Scholar
  276. Laan, P. A. van der Ludwig, R. A.: Toxin production by Helminthosporium sativum P. K. and B. and its significance in disease development. Canad. J. Bot. 35, 291–303 (1957).Google Scholar
  277. Laan, P. A. van der; Ludwig, R. A., E. Y. Spencer and C. H. Unwin: An antifungal factor from barley of possible significance in disease resistance. Canad. J. Bot. 38, 21–29 (1960).Google Scholar
  278. Laan, P. A. van der; LttndegÅrdh, H., and G. Stenlid: On the exudation of nucleotides and flavanone from living roots. Ark. Bot. (Stockh.) A 31, 1–27 (1944).Google Scholar
  279. MacDougal, D. T., and J. Dufrenoy: Mycorrhizal symbiosis in Aplectrum, Corallorhiza and Pinus. Plant Physiol. 19, 440–465 (1944).PubMedGoogle Scholar
  280. MacDougal, D. T., Criteria of nutritive relations of fungi and seed plants in mycorrhizae. Plant Physiol. 21, 1–10 (1946).PubMedGoogle Scholar
  281. MacDougal, D. T., Mack, W. B.: The action of ethylene in accelerating the blanching of celery. Plant Physiol. 2, 103 (1927).Google Scholar
  282. MacDougal, D. T., Mack, W. B., and B. E. Livingstone: Relation of oxygen pressure and temperature to the influence of ethylene dioxide production and on shoot elongation in very young wheat seedlings. Bot. Gaz. 94, 625–687 (1933).Google Scholar
  283. MacDougal, D. T., Madsen, G. C, and A. L. Pates: Occurrence of antimicrobial substances in chlorophyllose plants growing in Florida. Bot. Gaz. 113, 293–300 (1952).Google Scholar
  284. MacDougal, D. T., Mann, H. H., and T. W. Barnes: The competition between barley and certain weeds under controlled conditions. Ann. appl. Biol. 39, 111–131 (1952).Google Scholar
  285. MacDougal, D. T., Martin, P.: Die Abgabe von organischen Verbindungen, insbesondere von Scopoletin aus den Keimwurzeln des Hafers. Z. Bot. 45, 475–506 (1957).Google Scholar
  286. MacDougal, D. T., Massart, L.: Inhibiteurs de la germination dans les glomerules de la betterave à sucre et dans d’autres fruits secs et graines. Biochimija 22, 117–121 (1957).Google Scholar
  287. MacDougal, D. T., Meissner, R.: Über das Vorkommen eines die Keimung des Wurzelparasiten Alectra Vogelii Benth. hervorrufenden Stoffes in den Wirtswurzeln. Phyton (Austria) 3, 90–94 (1951).Google Scholar
  288. MacDougal, D. T., Melin, E.: Physiology of mycorrhizal relations in plants Annual. Rev. Plant Physiol. 4, 325–346 (1953).Google Scholar
  289. MacDougal, D. T., Growth factor requirements of mycorrhizal fungi of forest trees. Svensk bot. Tidskr. 48, 86–94 (1954).Google Scholar
  290. Melin, E., and V. S. R. Das: Influence of root metabolites on the growth of tree mycorrhizal fungi. Physiol. Plantarum (Cph.) 7, 851–858 (1954).Google Scholar
  291. MacDougal, D. T., Melin, E., and T. Wiken: Antibacterial substances in water extracts of pure forest litter. Nature (Lond.) 158, 200 (1946).Google Scholar
  292. MacDougal, D. T., Meîsois, S. K., and L. E. Williams: Effect of crop, crop residues, temperature and moisture on soil fungi. Phytopathology 47, 559–564 (1957).Google Scholar
  293. MacDougal, D. T., Mergen, F.: A toxic principle in the leaves of Ailanthus. Bot. Gaz. 121, 32–36 (1959).Google Scholar
  294. MacDougal, D. T., Metz, H.: Untersuchungen über die Rhizo-sphäre. Arch. Mikrobiol. 23, 297 (1955).Google Scholar
  295. MacDougal, D. T., Michener, H. D.: The action of ethylene on plant growth. Amer. J. Bot. 25, 711–720 (1938).Google Scholar
  296. MacDougal, D. T., Miller, E.V.: Physiology of citrus fruit in storage. Bot. Review 12, 393–423 (1946).Google Scholar
  297. MacDougal, D. T., Miller, E. V., J. R. Winston and D. F. Fisher: Production of epinasty by emanations from normal and decaying citrus fruits and from Penicillium digitatum. J. agric. Res. 60, 269–277 (1940).Google Scholar
  298. MacDougal, D. T., Millerd, A., J. Bonner and J. B. Biale: The climacteric rise in fruit respiration as controlled by phos-phorylative coupling. Plant Physiol. 28, 521–531 (1953).Google Scholar
  299. MacDougal, D. T., Molisch, H.: Über den Einfluß des Tabakrauchs auf die Pflanze. S.-B. Akad. Wiss. Wien, math.-nat. Kl. 120, 813–838 (1911).Google Scholar
  300. MacDougal, D. T., Der Einfluß einer Pflanze auf die andere. Allelopathie. Jena: Gustav Fischer 1937.Google Scholar
  301. MacDougal, D. T., Mothes, K.: Das Alkaloidproblem. Süddtsch. Apoth.-Ztg 21, 378 (1950).Google Scholar
  302. MacDougal, D. T., Moulton, J. E. : Extraction of auxin from maize, from smut tumours of maize and from Ustilago zeae. Bot. Gaz. 103, 725 (1942).Google Scholar
  303. MacDougal, D. T., Müller, K. O.: Einige einfache Versuche zum Nachweis von Phytoalexinen. Phytopath. Z. 27, 237–254 (1956).Google Scholar
  304. MacDougal, D. T., Relationship between Phytoalexin output and the number of infections involved. Nature (Lond.) 182, 167–168 (1958).Google Scholar
  305. MacDougal, D. T., Müller, C. H.: The association of desert annuals with shrubs. Amer. J. Bot. 40, 53–60 (1953).Google Scholar
  306. Naef-Roth, S., u. P. Reusser: Über die Wirkung der Fusarinsäure auf den Gaswechsel von Tomaten-Blattgewebe. Phytopath. Z. 22, 281–287 (1954).Google Scholar
  307. Naef-Roth, S.; P. Reusser; Neljtjbow, D.: Über die horizontale Nutation der Stengel von Pisum sativum und einiger anderer Pflanzen. Beih. bot. Zbl. 10, 128–138 (1901).Google Scholar
  308. Naef-Roth, S., u. P. Reusser: Geotropismus in der Laboratoriumsluft. Ber. dtsch. bot. Ges. 29, 97–112 (1911).Google Scholar
  309. Naef-Roth, S.; P. Reusser; Nelson, R. C: Studies on production of ethylene in the ripening process in fruits. Food Res. 4, 173–190 (1939).Google Scholar
  310. Naef-Roth, S., u. P. Reusser: Production and consumption of ethylene by ethylene treated bananas. Plant Physiol. 14, 817–822 (1939).Google Scholar
  311. Naef-Roth, S.; P. Reusser; Nelson, R. C, and R. B. Harvey: Fruits and vegetables in ripening and blanching produce ethylene. Minnesota Hort. 63, 105 (1935).Google Scholar
  312. Naef-Roth, S.; P. Reusser; Nickerson, W. J.: Ethylene as a metabolic product of the pathogenic fungus, Blastomyces dermatitidis. Arch. Biochem. 17, 225–233 (1948).Google Scholar
  313. Naef-Roth, S.; P. Reusser; Niederl, J. B., M. W. Brenner and J. N. Kelley: The identification and estimation of ethylene in the volatile products of ripening bananas. Amer. J. Bot. 25, 357–361 (1938).Google Scholar
  314. Naef-Roth, S.; P. Reusser; Niemann, E.: Vergleichende Untersuchungen über die Ausscheidung keimungshemmender Stoffe aus Früchten und Samen unter besonderer Berücksichtigung von Foeniculum vulgare Miller. Flora (Jena) 139, 185–242 (1952).Google Scholar
  315. Naef-Roth, S.; P. Reusser; Nienstadt, H.: Tannin as a factor in the resistance of chestnut Castanea spp. to the chestnut blight fungus, Endothia parasitica. Phytopathology 43, 32–38 (1953).Google Scholar
  316. Naef-Roth, S.; P. Reusser; Nissen, T. V.: Actinomycetes antagonistic to Poly-porus annosus Fr. Experientia (Basel) 12, 229–230 (1956).Google Scholar
  317. Naef-Roth, S.; P. Reusser; Nobécotjrt, P.: Sur la production d’anticorps par les tubercules des Ophrydées. C. R. Acad. Sci. (Paris) 177,1055–1057 (1923).Google Scholar
  318. Naef-Roth, S.; P. Reusser; Norkrans, D. : Influence of cellulolytic enzymes from Hymenomycetes on cellulose preparations of different crystallinity. Physiol. Plantarum (Cph.) 3, 75–87 (1950).Google Scholar
  319. Naef-Roth, S.; P. Reusser; Novogrudski, D.: The use of microorganisms in the control of fungal diseases of cultivated plants. [Russian.] USSR. Acad. Sci. Biol. Ser. Bull. 1, 277–293 (1937).Google Scholar
  320. Osborn, E. M. : On the occurrence of antibacterial substances in green plants. Brit. J. exp. Path. 24, 227–231 (1943).Google Scholar
  321. Osborn, E. M.; Osvald, H.: On antagonism between plants. Proc. Intern, bot. Congr. Stockholm 1950, S. 167–171.Google Scholar
  322. Patrick, Z. A.: The peach replant problem in Ontario. II. Toxic substances from micro-biol. decomposition products of peach root residues. Canad. J. Bot. 33, 461–486 (1955).Google Scholar
  323. Patrick, Z. A.; Patrick, Z. A., and L. W. Koch: Inhibition of respiration, germination and growth by substances arising during the decomposition of certain plant residues in the soil. Canad. J. Bot. 36, 621–647 (1958).Google Scholar
  324. Patrick, Z. A.; Pearson, J. A., and R. N. Robertson: The physiology of growth in apple fruits. VI. The control of respiration rate and synthesis. Austr. J. biol. Sci. 7, 1–17 (1954).Google Scholar
  325. Patrick, Z. A.; Penfold, A. R., and R. Grant: The germicidal values of Australian essential oils (exclusive of Eucalyptus) and their pure constituents together with those for some essential oil isolates and synthetics. J. Proc. roy. Soc. N. S. Wales 57, 211–215 (1923).Google Scholar
  326. Patrick, Z. A.; Phan-Chon-Ton: Observations sur la production d’éthylène par les fleurs et les fruits. C. R. Acad. Sci. (Paris) 243, 171–173 (1956).Google Scholar
  327. Patrick, Z. A.: Observations sur la production d’éthylène par le Pénicillium digitatum Sacc. C. R. Acad. Sci. (Paris) 244, 1243–1246 (1957 a).Google Scholar
  328. Patrick, Z. A.: Modification de la méthode de Young, Pratt et Biale en vue de l’amélioration du dosage de l’éthylène émis par les végétaux. C. R. Acad. Sci. (Paris) 245, 1019–1021 (1957b).Google Scholar
  329. Patrick, Z. A.; Pierson, C. F., S. S. Gothoskar, J. C. Walker and M. A. Stahmann: Histological studies on the role of pectic enzymes in the development of Fusarium wilt symptoms in tomato. Phytopathology 45, 524 (1955).Google Scholar
  330. Patrick, Z. A.; Pilet, P. E.: Activité anti-auxines-oxydasique de l’ Uromyces pisi parasite d’Euphorbia cyparissias. Phytopath. Z. 31, 162–179 (1957).Google Scholar
  331. Patrick, Z. A.; Plattner, P. A.; N. Clauson-Kaas: Über Lycomarasmin, den Welkestoff aus Fusarium lycopersici. Experientia (Basel) 1, 195 (1945).Google Scholar
  332. Patrick, Z. A.; Pörrit, S. W.: The role of ethylene in fruit storage. Sci. Agric. 31, 99–112 (1951).Google Scholar
  333. Patrick, Z. A.; Pofnd, G. S., and M. A. Stahmann: The production of a toxic material by Alternaria solani and its relation to the early blight disease of tomato. Phytopathology 41, 1104–1114 (1951).Google Scholar
  334. Patrick, Z. A.; Pratt, H. K.: Studies in the physiology of Pénicillium digitatum. Diss. Univ. Calif. Los Angeles 1944.Google Scholar
  335. Patrick, Z. A.: Direct chemical proof of ethylene production by detached leaves. Plant Physiol. 29, 16–18 (1954).Google Scholar
  336. Patrick, Z. A.; Pratt, H. K., B. E. Young and J. B. Biale: The identification of ethylene as a volatile product of ripening avocados. Plant Physiol. 23, 526–531 (1948).Google Scholar
  337. Patrick, Z. A.; Pratt, R.: Chlorellin, an antibacterial substance from Chlorella. Science 99, 351 (1944).Google Scholar
  338. Patrick, Z. A.; Preston, W. M., J. W. Mitchell and W. Reeve: Movement of alphamethoxy phenylacetic acid from one plant to another through their root systems. Science 119, 437–438 (1954).Google Scholar
  339. Patrick, Z. A.; Pringle, R. B., and A. C. Braun: The isolation of the toxin of Helminthosporium victoriae. Phytopathology 47, 369–371 (1957).Google Scholar
  340. Patrick, Z. A.; Prokoschew, S. M., E. J. Petroschenko u. W. S. Baranova: Vergleichende Untersuchungen des Solanins, Demissins und Tomatins. [Russian.] C. R. (Dokl.) Acad. .Sci. USSR. 74, 339 (1950).Google Scholar
  341. Patrick, Z. A.; Pryor, D. E., J. C. Walker and M. A. Stahmann: Toxicity of allyl iso-thiocyanate vapor to certain fungi. Amer. J. Bot. 27, 30–38 (1940).Google Scholar
  342. Rademacher, B., u. J. Ozolins: Einfluß der Getreidekonkurrenz und des Nährstoffgehaltes im Keimsubstrat auf Keimung und Jugendentwicklung verschiedener Unkräuter. Angew. Bot. 26, 69–93 (1952).Google Scholar
  343. Rademacher, B., u. J. Ozolins; Ramsbottom, J.: Orchid mycorrhiza. Proc. Intern. Congr. Plant Sci. 1926 Ithaca, 2, 1676–1687 (1927).Google Scholar
  344. Rademacher, B., u. J. Ozolins; Ramsay, A. A., and A. L. Musso: Coloring oranges with ethylene. Agric. Gaz. N. S. Wales 41, 382–383 (1930).Google Scholar
  345. Rademacher, B., u. J. Ozolins; Ratner, F. I.: Sur l’activité vitale des systèmes radiculaires dans ses relations avec la nutrition hétéro-trophe des phanérogames et le rôle des microorganismes. Essais de Bot. 2, 706–712 (1954). (Acad. Sci. USSR.).Google Scholar
  346. Rademacher, B., u. J. Ozolins; Rayner, M. C, and W. Nedlson-Jones: Problems in tree nutrition. London 1944.Google Scholar
  347. Rademacher, B., u. J. Ozolins; Regeimbal, L. O., and R. B. Harvey: The effect of ethylene on the enzymes of pineapples. J. Amer. chem. Soc. 49, 1117–1118 (1927).Google Scholar
  348. Rademacher, B., u. J. Ozolins; Regeimbal, L. O., A. A. Vacha and R. B. Harvey: The effect of ethylene on the respiration of bananas during ripening. Plant Physiol. 2, 357–359 (1927).Google Scholar
  349. Rademacher, B., u. J. Ozolins; Rennerfelt, E., and G. Nacht: The fungicidal activity of some constituents from heartwood of conifers. Svensk bot. Tidskr. 49, 419–432 (1955).Google Scholar
  350. Rademacher, B.; J. Ozolins; Ribereatj-Gayon, J., E. Peynaud et S. Lafourcade: Sur la formation de substances inhibitrices de la fermentation per Botrytis cinerea. C. R. Acad. Sci. (Paris) 234, 478–480 (1952).Google Scholar
  351. Rademacher, B.; J. Ozolins; Richter, O.: Über den Einfluß verunreinigter Luft auf Heliotropismus und Geotropismus. S.-B. Akad. Wiss. Wien, math.-nat. Kl. 115, 265 (1906).Google Scholar
  352. Rademacher, B.; J. Ozolins; Ridley, V. W.: Some principles involved in the handling of fruits. Fruit Dispatch (N.Y.) 8, 523–525 (1923).Google Scholar
  353. Rademacher, B., u. J. Ozolins; Rishbeth, J.: Observations on the biology of Fomes annosus with particular reference to East Anglian pine plantations. I. The outbreaks of disease and ecological status of the fungus. Ann. Bot. (Lond.) 14, 365–383 (1950).Google Scholar
  354. Rademacher, B., u. J. Ozolins: Observations on the biology of Fomes annosus etc. II. and III. Ann. Bot. (Lond.) 15, 1–21, 221–246 (1951).Google Scholar
  355. Rademacher, B., u. J. Ozolins; Roberts, D. W. A.: Some effects of ethylene on germinating wheat. Canad. J. Bot. 29,10–25 (1951).Google Scholar
  356. Rademacher, B., u. J. Ozolins; Rochlin, E.: Zur Frage der Widerstandsfähigkeit der Cruciferen gegen die Kohlhernie (Plasmodiophora brassici War.). Phytopath. Z. 5, 381–406 (1933).Google Scholar
  357. Rademacher, B., u. J. Ozolins; Ross, A. F., and C. E. Williamson: Physiologically active emanations from virus infected plants. Phytopathology 41, 431–438 (1951).Google Scholar
  358. Rademacher, B., u. J. Ozolins; Rovtra, A. D.: Plant root excretions in relation to the rhizosphere effect. I. The nature of root exudate from oats and peas. Plant and Soil 7, 178–194 (1956).Google Scholar
  359. Rademacher, B., u. J. Ozolins; Rüge, U.: Untersuchungen über keimungsfördernde Wirkstoffe. Planta (Berl.) 35, 297–318 (1947).Google Scholar
  360. Sabinen, D. A., u. E. G. Minina: Das mikrobiologische Bodenprofil als zonales Kennzeichen. Proc. 2. Int. Congr. Soil Sci. Leningrad-Moscow 3, 224–235 (1932).Google Scholar
  361. Sabinen, D. A., u. E. G. Minina; Sander, H.: Studien über Bildung und Abbau von Tomatin in der Tomatenpflanze. Planta (Berl.) 47, 374–400 (1956).Google Scholar
  362. Sabinen, D. A., u. E. G. Minina; Sanval, B.D.: Investigations on the metabolism of Fusarium lyco-persici Sacc. with the aid of radioactive carbon. Phytopath. Z. 25, 333–384 (1955/56).Google Scholar
  363. Sabinen, D. A., u. E. G. Minina; Saunders, A. R. : Studies in phanerogamic parasitism which particular reference to Striga lutea. Sci. Bull. Dept. Agric. S. Afr. 128 (1933).Google Scholar
  364. Sabinen, D. A., u. E. G. Minina; Sauthoff, W.: Über toxische Stoffwechselprodukte in Kulturfiltraten von Botrytis cinerea Pers. Phytopath. Z. 23, 1–36 (1955).Google Scholar
  365. Sabinen, D. A., u. E. G. Minina; Schaal, L. A., and G. Johnson: The inhibitory effect of phenolic compounds on the growth of Streptomyces scabies as related to the mechanism of scab resistance. Phytopathology 45, 626–628 (1955).Google Scholar
  366. Sabinen, D. A., u. E. G. Minina; Schaffstein, G.: Untersuchungen über die Avitaminose der Orchideenkeimlinge. Jb. wiss. Bot. 86, 720–752 (1938).Google Scholar
  367. Scheffer, R. P., and J. C. Walker: The physiology of Fusarium wilt of tomato. Phytopathology 43,116–125 (1953).Google Scholar
  368. Sabinen, D. A., u. E. G. Minina; Schenderetzkij, E. J.: Die wechselseitige Toxizität der wäßrigen Auszüge von Pflanzen. [Russian.] Agrobiologija 2, 137 (1952).Google Scholar
  369. Sabinen, D. A., u. E. G. Minina; Schischkina, O. I.: Die antiseptischen Eigenschaften einiger ätherischer Öle. [Russian.] Chirurgie 4 (1944).Google Scholar
  370. Sabinen, D. A., u. E. G. Minina; Schönbeck, F.: Untersuchungen über Vorkommen und Bedeutung von Hemmstoffen in Getreiderückständen innerhalb der Fruchtfolge. Z. Pflanzenkr. u. Pflanzenschutz 63,513–545 (1956).Google Scholar
  371. Sabinen, D. A., u. E. G. Minina; Shoji, K., F. T. Addicott and W. A. Swets: Auxin in relation to leaf blade abscission. Plant Physiol. 26, 189–191 (1951).Google Scholar
  372. Sabinen, D. A., u. E. G. Minina; Sievers, A. F., and R. H. True: A preliminary study of the forced curing of lemons as practiced in California. U. S. Dept. Agric. Bur. Plant Ind. Bull. 232 (1912).Google Scholar
  373. Sabinen, D. A., u. E. G. Minina; Sigmund, W.: Über die Einwirkung von Stoffwechselendprodukten auf die Pflanzen. I. Einwirkung N-haltiger Stoff Wechselendprodukte auf die Keimung von Samen (Alkaloide). Biochem. Z. 62, 299–338 (1914a).Google Scholar
  374. Sabinen, D. A., u. E. G. Minina: II. Glukoside, Gerbstoffe und ihre Spaltungsprodukte. Biochem. Z. 62, 339–386 (1914b).Google Scholar
  375. Sabinen, D. A., u. E. G. Minina: III. Ätherische Öle, Terpene u. a. Biochem. Z. 146, 389–419 (1924).Google Scholar
  376. Sabinen, D. A., u. E. G. Minina; Simmonds, P.M.: The influence of antibiosis in the pathogenicity of Helminthosporium sativum. Sci. Agric. 27, 625–632 (1947).Google Scholar
  377. Sabinen, D. A., u. E. G. Minina; Singer, M.: Über den Einfluß der Laboratoriumsluft auf das Wachstum der Kartoffelsprosse. Ber. dtsch. bot. Ges. 21, 175–180 (1903).Google Scholar
  378. Sabinen, D. A., u. E. G. Minina; Slankis, V.: Einfluß von Exudaten von Boletus variegatus auf die dichotomische Verzweigung isolierter Kiefernwurzeln. Physiol. Plantarum (Cph.) 1, 390–400 (1948).Google Scholar
  379. Sabinen, D. A., u. E. G. Minina; Smith, A. J. M., and R. Gane: Influence of a gaseous product from apples on the germination of seeds. Rept. Food investig. Bd. Gr. Britain 1932, 156–158 (1933).Google Scholar
  380. Sabinen, D. A., u. E. G. Minina; Smith, G. E.: Inhibition of Fusarium oxysporum f. ly coper sici by a species of Micromonospora isolated from tomato. Phytopathology 47, 429–432 (1957).Google Scholar
  381. Sabinen, D. A., u. E. G. Minina; Spencer, M. S.: Ethylene metabolism in tomato fruit. I. Relationship of ethylene evolution to fruit respiration and ripening. Canad. J. Biochem. 34, 1261–1278 (1956).Google Scholar
  382. Sabinen, D. A., u. E. G. Minina: Ethylene metabolism in tomato fruit. II. Determination of total and C14-labelled ethylene. Canad. J. Biochem. 36, 595–601 (1958).Google Scholar
  383. Sabinen, D. A., u. E. G. Minina; Starkey, R. L.: Some influences of the development of higher plants upon the microorganisms in the soil. I. Historical and introductory. Sou Sci. 27, 319–334 (1929).Google Scholar
  384. Sabinen, D. A., u. E. G. Minina; Stoll, Ch., J. Renz u. E. Gäumann: Über die Bildung von Fusarinsäure und Dehydrofusarinsäure durch das Fusarium lycopersici Sacc. in sapro-phytischer Kultur. Phytopath. Z. 29, 388–394 (1957).Google Scholar
  385. Sabinen, D. A., u. E. G. Minina, Suchortjkow, K.: The physiological immunity of plants. [Russian.] Moskau: R. Akad. Wiss. U.S.S.R. 1952.Google Scholar
  386. Sabinen, D. A., u. E. G. Minina; Swet-Moldawski, G.: Über die Wirkung der Ausdünstungen ätherischer Öle auf Einzeller. [Russian.] Bull. exp. Biol. Med. 23, 4 (1947).Google Scholar
  387. Tamari, K., and J. Kaji: Studies on the mechanism of injurious action of fusaric acid on plant growth. J. agr. chem. Soc. Japan 26, 223–227, 295–303, 345–353 (1952); 27, 245–252, 303–306 (1953).Google Scholar
  388. Tamari, K., Thimann, K. V.: The life of bacteria. New York: McMillan 1955.Google Scholar
  389. Tamari, K., Timonin, M. I. : The interaction of higher plants and soil microorganisms. III. Effect of by-products of plant growth on activity of fungi and actinomycetes. Soil Sci. 52, 395–413 (1941).Google Scholar
  390. Tamari, K., Tokin, B.P.: Phytonzide. Berlin: VEB Verlag 1956.Google Scholar
  391. Tamari, K., Tribe, H.T.: Studies in the physiology of parasitism. XIX. On the killing of plant cells by enzymes from Botrytis cinerea and Bacterium aroideae. Ann. Bot. (Lond.) 19, 351–368 (1955).Google Scholar
  392. Tamari, K., Tukey, H. B., and J. A. Romberger: The nature of substances leached from foliage. Plant Physiol. 34 (Suppl.) VI (1959).Google Scholar
  393. Tamari, K., Tukey jr. H. B., H. B. Tukey and S. H. Wittwer: Loss of nutrients by foliar leaching as determined by radioisotopes. Proc. Amer. Soc. Hortic. Sci. 71, 496–506 (1958).Google Scholar
  394. Tamari, K., Tukey, H. B., S. H. Wittwer and H. B. Tukey jr.: Leaching of nutrients from plant foliage as determined by radioisotopes. Radioisotopes Sci. res. 4, 304–321 (1958).Google Scholar
  395. Ullman, S. B. : On germination inhibitors. V. Essential oils, alkaloids and glucosides as inhibitors of germination and growth. Ph. D. thesis, Jerusalem 1940.Google Scholar
  396. Ullman, S. B., u. Ulrich, R.: La vie des fruits. Paris: Masson & Cie. 1952.Google Scholar
  397. Vacha, G. A., and R. B. Harvey: The use of ethylene, propylene and similar compounds in breaking the rest period of tubers, bulbs, cuttings and seeds. Plant Physiol. 2, 187–194 (1927).PubMedGoogle Scholar
  398. Vacha, G. A., Vallance, K. B.: Effect of the Striga germination stimulant on the respiration of Striga seeds. Nature (Lond.) 164, 802 (1949).Google Scholar
  399. Vacha, G. A., Studies on the germination of the seeds of Striga hermonthica. I. The influence of moisture treatment, stimulant dilution and after-ripening on germination. Ann. Bot. (Lond.) 14,347–363 (1950).Google Scholar
  400. Vacha, G. A., Studies on the germination of the seeds of Striga hermonthica. II. The effect of the stimulating solution on seed respiration. J. exp. Bot. 2, 31–40 (1951a).Google Scholar
  401. Vacha, G. A., Studies on the germination of the seeds of Striga hermonthica. III. On the nature of pretreatment and after-ripening. Ann. Bot. (Lond.) 15, 109–128 (1951b).Google Scholar
  402. Vacha, G. A., Varma, S. C.: On the nature of competition between plants in the early phase of their development. Ann. Bot. (Lond.) 2, 203–225 (1938).Google Scholar
  403. Vacha, G. A., Virtanen, A. I. : Investigations on nitrogen fixation by the alder. II. Associated culture of spruce and inoculated alder without combined nitrogen. Physiol. Plantarum (Cph.) 10,164–169 (1957).Google Scholar
  404. Waggoner, P. E., and A. E. Dlmond : Production and role of extracellular pectic enzymes of Fusarium oxysporum f. lycopersici. Phytopathology 45, 79 (1955).Google Scholar
  405. Waggoner, P. E., Waks, Ch.: The influence of extract from Bobinia pseudacacia on the growth of barley. Publ. Fac. Sci. Univ. Charles Prague 150, 84–85 (1936).Google Scholar
  406. Waggoner, P. E., Waksman, S.A.: Antibiotics and their significance in the physiology of microorganisms. Proc. 7th Intern. Bot. Congr. Stockholm 1950, S. 440 to 447.Google Scholar
  407. Walker, J. C: Botrytis neck rots of onions. J. agric. Res. 33, 893–928 (1926).Google Scholar
  408. Waggoner, P. E., Walker, J. C, S. Morell and H. H. Foster: Toxicity of mustard oils and related sulfur compounds to certain fungi. Amer. J. Bot. 24, 536–541 (1937).Google Scholar
  409. Waggoner, P. E., Walker, J. C, and M. A. Stahmann: Chemical nature of disease resistance in plants. Annual. Rev. Plant Physiol. 6, 351–366 (1955).Google Scholar
  410. Waggoner, P. E., Wallace, R. H.: The production of intumescences upon apple twigs by ethylene gas. Bull. Torrey bot. Club 53, 385–401 (1926).Google Scholar
  411. Waggoner, P. E., The production of intumescences in transparent apple by ethylene gas as affected by external and internal conditions. Bull. Torrey bot. Club 54,499–542 (1927).Google Scholar
  412. Waggoner, P. E., Histogenesis of intumescences in apple induced by ethylene gas. Amer. J. Bot. 15,509–524 (1928).Google Scholar
  413. Waggoner, P. E., Weindling, R.: Trichoderma lignorum as a parasite of other soil fungi. Phytopathology 22, 837–845 (1932).Google Scholar
  414. Waggoner, P. E., Studies on a lethal principle effective in the parasitic action of Trichoderma lignorum on Rhizoctonia solani and other soil fungi. Phytopathology 24, 1153–1179 (1934).Google Scholar
  415. Waggoner, P. E., Experimental consideration of the mold toxins of Gliocladium and Trichoderma. Phytopathology 31, 991–1003 (1941).Google Scholar
  416. Waggoner, P. E., Weindling, R., and O. H. Emerson: The isolation of a toxic substance from the culture filtrate of Trichoderma. Phytopathology 26, 1068–1070 (1936).Google Scholar
  417. Waggoner, P. E., Weindling, R., and H. S. Fawcett: Experiments in the control of Rhizoctonia damping-off of citrus seedlings. Hilgardia 10, 1–16 (1936).Google Scholar
  418. Waggoner, P. E., Went, F. W.: The dependence of certain annual plants on shrubs in Southern California deserts. Bull. Torrey bot. Club 69, 100–114 (1942).Google Scholar
  419. Waggoner, P. E., Went, F. W., G. Juhren and M. G. Juhren: Fire and biotic factors affecting germination. Ecology 33, 351–364 (1952).Google Scholar
  420. Waggoner, P. E., West, P. M., and A. G. Lochhead: Qualitative studies of soil microorganisms. IV. The rhizosphere in relation to the nutritive requirements of soil bacteria. Canad. J. Res. C 18, 129–135 (1940).Google Scholar
  421. Waggoner, P. E., Whitney, N. J., and C. G. Mortimore: An antifungal substance in the corn plant and its effect on growth of two stalk rotting fungi. Nature (Lond.) 183, 341 (1959).Google Scholar
  422. Waggoner, P. E., Wilkie, D.: Studies on fertilization in Pteridium aqui-linum. Ph. D. Thesis, Glasgow 1954.Google Scholar
  423. Waggoner, P. E., Williams, C. N.: The parasitism of witch weed, a review. W. Air. J. biol. Chem. 2, 57–73 (1958).Google Scholar
  424. Waggoner, P. E., Williamson, C. E.: Ethylene, a metabolic product of diseased or injured plants. Phytopathology 40, 205–208 (1950).Google Scholar
  425. Waggoner, P. E., Winstead, N. N., and J. C. Walker: Production of vascular browning by metabolites from several pathogens. Phytopathology 44, 153–158 (1954).Google Scholar
  426. Waggoner, P. E., Winter, A. G.: Die Bodenmüdigkeit im Obstbau. Zeitfragen d. Baumschule 7, 1–9 (1952a).Google Scholar
  427. Waggoner, P. E., Untersuchungen über die Aufnahme von Penicillin und Streptomycin durch die Wurzeln von Lepidium sativum und ihre Beständigkeit in natürlichen Böden. Z. Bot. 40, 153–172 (1952b).Google Scholar
  428. Waggoner, P. E., Antibiotika und Landwirtschaft. Dtsch. landw. Presse 76, 87–88 (1953).Google Scholar
  429. Waggoner, P. E., Beziehungen zwischen Edaphon und Pflanze im Lichte neuerer Biocönoseforschung. Z. Pflanzenkr. u, Pflanzenschutz 64, 407–415 (1957).Google Scholar
  430. Waggoner, P. E., Winter, A. G., u. W. Btjblitz: Über die keim- und entwicklungshemmende Wirkung der Buchenstreu. Naturwiss. 40, 416 (1953).Google Scholar
  431. Waggoner, P. E., Winter, A. G., u. F. Schönbeck: Untersuchungen über die Beeinflussung der Keimung und Entwicklung von Getreidesamen durch Kaltwasserauszüge aus Getreidestroh. Naturwiss. 40, 168–169 (1953a).Google Scholar
  432. Waggoner, P. E., Untersuchungen über den Einfluß von Kaltwasserextrakten aus Getreidestroh und anderer Blattstreu auf Wurzelbildung und Wachstum. Naturwiss. 40,513–514 (1953b).Google Scholar
  433. Waggoner, P. E., Untersuchungen über wasserlösliche Hemmstoffe aus Getreideböden. Naturwiss. 41,145–146 (1954).Google Scholar
  434. Waggoner, P. E., Winter, A. G., u. E. Sievers: Untersuchungen über die Beeinflussung der Samenkeimung durch Kaltwasserextrakte aus der Blattstreu verschiedener Gramineen. Naturwiss. 39, 191–192 (1952).Google Scholar
  435. Waggoner, P. E., Winter, A. G., u. L. Willeke: Untersuchungen über Antibiotica aus höheren Pflanzen. Leichtflüchtige Hemmstoffe der Ranunculaceen. III. Mitt. Naturwiss. 38, 457 (1951).Google Scholar
  436. Waggoner, P. E., Untersuchungen über Antibiotica aus höheren Pflanzen. IV. Mitt. Hemmstoffe im herbstlichen Laub. Naturwiss. 39, 45–46 (1952a).Google Scholar
  437. Waggoner, P. E., Untersuchungen über Antibiotica aus höheren Pflanzen. V. Mitt. Hemmstoffe in Blättern und Blattstreu der Gramineen. Naturwiss. 39, 190–191 (1952b).Google Scholar
  438. Waggoner, P. E., VI. Mitt. Gasförmige Hemmstoffe aus Tropaeolum majus und ihr Verhalten im menschlichen Körper bei Aufnahme von Tro-paeolum-Sala,t per os. Naturwiss. 39, 236–237 (1952c).Google Scholar
  439. Waggoner, P. E., Wolf, F. T.: The production of indole-acetic acid by Ustilago zeae and its possible significance in tumour formation. Proc. nat. Acad. Sci. (Wash.) 38, 106 (1952).Google Scholar
  440. Waggoner, P. E., The production of indole acetic acid by the cedar apple rust fungus and its identification by paper chromatography. Phytopath. Z. 26, 219 (1956).Google Scholar
  441. Waggoner, P. E., Wolfe, H. S.: Effect of ethylene on the ripening of bananas-. Bot. Gaz. 92, 337–366 (1931).Google Scholar
  442. Waggoner, P. E., Wood, R. K. S.: The control of diseases of lettuce by the use of antagonistic organisms. II. The control of Rhizoctonia solani. Ann. appi. Biol. 38, 217–230 (1951).Google Scholar
  443. Waggoner, P. E., Wood, R. K. S., and M. Tveit: Control of plant diseases by use of antagonistic organisms. Bot. Review 21, 441–492 (1955).Google Scholar
  444. Waggoner, P. E., Wright, J. M.: Biological control of a soil-borne Phytium infection by seed inoculation. Plant and Soil 8, 132–140 (1956a).Google Scholar
  445. Waggoner, P. E., The production of antibiotics in soil. IV. Production of antibiotics in coats of seeds sown in soil. Ann. appl. Biol. 44, 561–566 (1956b).Google Scholar
  446. Yardeni, D., and M. Evenari: The germination inhibiting, growth inhibiting and phytocidal effect of certain leaves and leaf extracts. Phyton (Argentina) 2, 11–16 (1952).Google Scholar
  447. Yardeni, D., Young, R. E., H. K. Pratt and J. B. Biale: Identification of ethylene as a volatile product of the fungus Penicillium digitatum. Plant Physiol. 26, 304–310 (1951).Google Scholar
  448. Zimmerman, P. W., W. Crocker and A. E. Hitchcock: The response of plants to illuminating gas. Proc. Amer. Soc. hört. Sci. 27, 53–56 (1930).Google Scholar
  449. Zimmerman, P. W., W. Crocker; Zimmerman, P. W., and A. E. Hitchcock: Initiation and stimulation of adventitious roots caused by unsaturated carbon gases. Contr. Boyce Thompson Inst. 5, 351–369 (1933).Google Scholar
  450. Zimmerman, P. W., W. Crocker; Zimmerman, P. W., A. E. Hitchcock and W. Crocker: The effect of ethylene and illuminating gas on roses. Contr. Boyce Thompson Inst. 3, 459–481 (1931).Google Scholar
  451. Zimmerman, P. W., W. Crocker; Zimmerman, P. W., and F. Wilcoxon: Several chemical growth substances which cause initiation of roots and other responses in plants. Contr. Boyce Thompson Inst. 7, 209–229 (1935).Google Scholar
  452. Zimmerman, P. W., W. Crocker; Zukovskaya, P. W.: Changes in bacteriorrhiza of cultived plants. [Russian.] Microbiologija 10, 919 (1941).Google Scholar
  453. Adams, D. F.: Review of effects of pollutants on vegetation. Arch. industr. Hlth 14, 229–245 (1956).Google Scholar
  454. Addicott, F. T., and Ruth S. Lynch: Physiology of abscission. Ann. Rev. Plant Physiol. 6, 211–238 (1955).Google Scholar
  455. Akamine, E. K.: Germination of Hawaiian range-grass seeds. Hawaii Agric. exp. St. techn. Bull. 2, 60 (1944).Google Scholar
  456. Akemine, M.: Zur Kenntnis der Keimungsphysiologie des Reises. Fühlings landw. Z. 63, 78–93 (1914).Google Scholar
  457. Albaum, H. G., J. Donnelly and S. Korkes: The growth and metabolism of oat seedlings after exposure to oxygen. Amer. J. Bot. 29, 388–395 (1942).Google Scholar
  458. Albert, W. B., and G. M. Armstrong: Effects of high soil moisture and lack of soil aeration upon fruiting behaviour of young cotton plants. Plant Physiol. 6, 585–591 (1931).PubMedGoogle Scholar
  459. Allen, P. J.: The role of a self-inhibitor in the germination of rust uredospores. Phytopathology 45, 259–266 (1955).Google Scholar
  460. Allen, P. J.: Properties of a volatile fraction from uredospores of Puccinia graminis var. tritici, affecting their germination and development. I. Biological activity. Plant Physiol. 32, 385–389 (1957).PubMedGoogle Scholar
  461. Allison, F. E., C.A. Ludwig, F.W. Minor and S.R. Hoover: Biochemical nitrogen fixation studies. II. Comparative respiration of nodules and roots, including non-legume roots. Bot. Gaz. 101, 534–549 (1940).Google Scholar
  462. Allison, R. V., and J. W. Shive: Microsampling for the determination of dissolved oxygen. Soil Sci. 15, 489–491 (1923 a).Google Scholar
  463. Allison, R. V., and J. W. Shive: Studies on the relation of aeration and continuous renewal of nutrient solution to the growth of soybeans in artificial cultures. Amer. J. Bot. 10, 554–562 (1923b).Google Scholar
  464. Anderson, Alice M.: The effect of carbon dioxide and some other gases on the germination of seeds of Poa compressa. Amer. J. Bot. 20, 678–679 (1933).Google Scholar
  465. Andrews, F. M., and C. C. Beal: The effect of soaking in water and of aeration on the growth of Zea Mays. Bull. Torrey bot. Club 46, 91–100 (1919).Google Scholar
  466. Arnon, D.I.: Ammonium and nitrate nitrogen nutrition of barley at different seasons in relation to hydrogen-ion concentration, manganese, copper and oxygen supply. Soil Sci. 44, 91–121 (1937).Google Scholar
  467. Atwood, W. M.: A physiological study of the germination of Avena fatila. Bot. Gaz. 57, 386–414 (1914).Google Scholar
  468. Axentjev, B. N.: Über die Rolle der Schalen von Samen und Früchten die bei der Keimen auf Licht reagieren. Beih. bot. Zbl. 46, 119–202 (1930).Google Scholar
  469. Baas Becking, L. G. M.: Notes on some Cyanophyceae of the Pacific region. Proc. kon. ned. Akad. Wet. C 54, 213–225 (1951).Google Scholar
  470. Baas Becking, L. G. M., and I.R. Kaplan: The microbial origin of the sulphur nodules of Lake Eyre. Trans. roy. Soc. S. Aust. 79, 52–65 (1956).Google Scholar
  471. Baas Becking, L. G. M., and Margaret MacKay: Biological processes in the estuarine environment. VI. The influence of Enteromorpha on its environment. Proc. kon. ned. Akad. Wet. B 59, 109–123 (1956).Google Scholar
  472. Baas Becking, L. G. M., and E. J. F. Wood: Biological processes in the estuarine environment. I and II. Ecology of the sulphur cycle. Proc. kon. ned. Akad. Wet. B 58, 160–181 (1955).Google Scholar
  473. Bailey, P. C.: The influence of some atmospheric gases upon the rate of mitosis in root tips of Trillium sessile L. Cytologia (Tokyo) 23, 211–217 (1958).Google Scholar
  474. Bakke, A. L., and N. L. Noecker: The relation of moisture to respiration and heating in stored oats. Iowa Agric. exp. St. Bull. 165, 320–336 (1933).Google Scholar
  475. Ballard, L. A. T.: Studies of dormancy in the seeds of subterranean clover. I. Breaking of dormancy by carbon dioxide and by activated carbon. Aust. J. biol. Sci. 11, 246–260 (1958).Google Scholar
  476. Barnett, H. L., and V.G. Lilly: The effects of humidity, temperature and carbon dioxide on sporulation. Mycologia 47, 26–29 (1955).Google Scholar
  477. Barron, E. S. G.: Thiol groups of biological importance. Advanc. Enzymol. 11, 201–258 (1951).Google Scholar
  478. Barton, Lela C.: Respiration and germination studies of seeds in moist storage. Ann. N.Y. Acad. Sci. 46, 185–208 (1945).Google Scholar
  479. Barton, Lela C.: Gas effects on soaking injury of seeds. Contr. Boyce Thompson Inst. 16, 55–71 (1950).Google Scholar
  480. Barton, Lela C.: Relation of different gases to the soaking injury of seeds. II. Contr. Boyce Thompson Inst. 17, 7–34 (1952).Google Scholar
  481. Barton, Lela C.: Effect of pre-soaking on dormancy in seeds. Contr. Boyce Thompson Inst. 17, 435–438 (1954).Google Scholar
  482. Barton, Lela C., and W. Crocker: Twenty years of seed research. London: Faber and Faber 1948.Google Scholar
  483. Barton, Lela C., and Jean McNab: Relation of different gases to the soaking injury of seeds. III. Some chemical aspects. Contr. Boyce Thompson Inst. 18, 339–356 (1956).Google Scholar
  484. Baver, L. D., and R. B. Farnsworth: Soil structure effects in the growth of sugar beets. Soil Sci. Soc. Amer. Proc. 5, 45–48 (1940).Google Scholar
  485. Beadle, N. C. W.: Studies in halophytes. I. The germination of the seeds and establishment of the seedlings of five species of Atriplex in Australia. Ecology 33, 49–62 (1952).Google Scholar
  486. Beal, C.C.: The effect of aeration on the roots of Zea Mays L. Proc. Ind. Acad. Sci. 1917, 177–180 (1918).Google Scholar
  487. Becker, H.: Über die Keimung verschiedener Früchte und Samen bei derselben Spezies. Beih. bot. Zbl. 29, 21–143 (1912).Google Scholar
  488. Beckman, C. H., J. E. Kuntz and A. J. Riker: The growth of the oak wilt fungus with various vitamins and carbon and nitrogen sources. Phytopathology 43, 441–447 (1953).Google Scholar
  489. Becquerel, P.: La longévité des graines macrobiotiques. C. R. Acad. Sci. (Paris) 194, 1662–1664 (1932).Google Scholar
  490. Beijerinck, M. W.: On the relation of the obligate anaerobics to free oxygen. Proc. kon. ned. Akad. Wet. 1, 14–26 (1898).Google Scholar
  491. Benedict, F.: The composition of the atmosphere with special reference to its oxygen content. Washington 1912.Google Scholar
  492. Bentley, Joyce A.: Role of plant hormones in algal metabolism and ecology. Nature (Lond.) 181, 1499–1502 (1958).Google Scholar
  493. Bergman, H. F.: The relation of aeration to the growth and activity of roots and its influence on the ecesis of plants in swamps. Ann. Botany 133, 13–33 (1920).Google Scholar
  494. Bergman, H. F.: Oxygen deficiency as a cause of disease in plants. Bot. Review 25, 417–485 (1959).Google Scholar
  495. Betz, A.: Zur Atmung wachsender Wurzelspitzen. III. Das Verhalten in Stickstoff- und hochprozentiger Sauerstoffatmosphäre: die Pasteursche Reaktion. Planta (Berl.) 50, 122 to 143 (1957).Google Scholar
  496. Black, M.: Interrelationships of germination inhibitors and oxygen in the dormancy of seed of Betula. Nature (Lond.) 178, 924–925 (1956).Google Scholar
  497. Black, M., and P. F. Wareing: The role of germination inhibitors and oxygen in the dormancy of light-sensitive seed of Betula spp. J. exp. Bot. 10, 134–145 (1959).Google Scholar
  498. Blackman, V. H.: Condition of teleutospore germination and of sporidia formation in the Uredinales. New Phytologist 2, 10–14 (1903).Google Scholar
  499. Bleasdale, J. A. K.: Smoke pollution and the growth of plants. Herbage Abstr. 27, 161–165 (1957).Google Scholar
  500. Bobrov, Ruth A.: Effect of smog on the anatomy of oat leaves. Phytopathology 42, 558–563 (1952).Google Scholar
  501. Bobrov, Ruth A.: Use of plants as biological indicators of smog in the air of Los Angeles County. Science 121, 510–511 (1955a).PubMedGoogle Scholar
  502. Bobrov, Ruth A.: Leaf structure of Poa annua with observations on its smog sensitivity. Amer. J. Bot. 42, 467–474 (1955b).Google Scholar
  503. Boehm, J.: Über das Keimen von Samen in reinem Sauerstoffgase. S.-B. Akad. Wiss. Wien, math.-nat. Kl., 1, Abt. 7, 48 (1873).Google Scholar
  504. Böhmer, K.: Die Bedeutung der Samenteile für die Lichtwirkung und die Wechselbeziehung von Licht und Sauerstoff bei der Keimung lichtempfindlicher Samen. Jb. wiss. Bot. 68, 549–601 (1928).Google Scholar
  505. Boicourt, A. W., and R. C. Allen: Effect of aeration on growth of hybrid tea roses. Proc. Amer. Soc. horticult. Sci. 39, 423–425 (1941).Google Scholar
  506. Bond, G.: Symbiosis of leguminous plants and nodule bacteria. IV. The importance of the oxygen factor in nodule formation and function. Ann. Botany, N.s. 15, 95–108 (1951a).Google Scholar
  507. Bond, G., and J. T. MacConnell: Nitrogen fixation in detached non-legume root nodules. Nature (Lond.) 176, 606 (1955).Google Scholar
  508. Boresch, K.: Zur Biochemie der frühtreibenden Wirkung des Warmbades. Biochem. Z. 202, 180–201 (1928).Google Scholar
  509. Bottomley, W. B., and H. Jackson: Some preliminary observations on the assimilation of carbon monoxide by green plants. Proc. roy. Soc. B 72, 130–131 (1903).Google Scholar
  510. Boynton, D.: Soils in relation to fruit-growing in New York. Part XV. Seasonal and soil influences on oxygen and carbon dioxide levels of New York soils. Cornell Agric. exp. St. Bull. No. 763 (1941).Google Scholar
  511. Boynton, D., and O. C. Compton: Effect of Oxygen pressure in aerated nutrient solution on production of new roots and on growth of roots and tops by fruit trees. Proc. Amer. Soc. horticult. Sci. 42, 53–58 (1943).Google Scholar
  512. Boynton, D., J. I. Devilliers and W. Reutner: Are there different critical oxygen concentrations for the different phases of root activity? Science 88, 569–570 (1938).PubMedGoogle Scholar
  513. Boynton, D., and W. Retjtner: Seasonal variation of oxygen and carbon dioxide in three different orchard soils during 1938 and its possible significance. Proc. Amer. Soc. horticult. Sci. 36, 1–6 (1939).Google Scholar
  514. Braun, H.: Untersuchungen über den Einfluß von Kohlensäure und Sauerstoff auf Keimung und Pflanzgutwert der Kartoffelknolle. Arb. biol. Reichsanst. Land- u. Forstw. irtsch. 19, 17–93 (1931).Google Scholar
  515. Brierley, J. K.: Seasonal fluctuations of the concentration of oxygen and carbon dioxide in the litter layer of beech woods, with reference to salt uptake by excised mycorrhizal roots of beech. J. Ecology 43, 404–408 (1955).Google Scholar
  516. Briner, E., F. Chodat et H. Paillard: La présence de l’ozone dans Fair et son action sur la croissance des plantes. C. R. Soc. Physique Hist. natur. 52, 128–132 (1935).Google Scholar
  517. Brittain, E.G.: Oxygen effects on photosynthesis. Ph. D. Thesis (unpublished), Melbourne 1957.Google Scholar
  518. Brown, A. H., and A. W. Frenkel: Photosynthesis. Ann. Rev. Plant. Physiol. 4, 23–58 (1953).Google Scholar
  519. Brown, H., and F. Escombe: The influence of varying amounts of carbon dioxide in the air on the photosynthetic processes of leaves and on the mode of growth of plants. Proc. roy. Soc. B 70, 397–413 (1902).Google Scholar
  520. Brown, R.: An experimental study of the permeability to gases of the seed coat membranes of Cucurbita Pepo, Ann. Botany N.s. 4, 379–395 (1940).Google Scholar
  521. Brown, R.: Studies in germination and seedling growth. I. The water content, gaseous exchange and dry weight of attached and isolated embryos of barley. Ann. Botany, N.s. 7, 93–113 (1943).Google Scholar
  522. Brown, R.: The gaseous exchange of seeds and isolated cotyledons of Cucurbita Pepo. Ann. Botany, N.s. 6, 293–321 (1943).Google Scholar
  523. Brown, R.: The gaseous exchange between the root and shoot of the seedling of Cucurbita Pepo. Ann. Botany, N.s. 11, 417–437 (1947).Google Scholar
  524. Brown, W.: On the germination and growth of fungi at various temperatures and in various concentrations of oxygen and of carbon dioxide. Ann. Botany 36, 257–283 (1922 a).Google Scholar
  525. Brown, R.: Studies in the physiology of parasitism. IX. The effect on the germination of fungal spores of volatile substances arising from plant tissues. Ann. Botany 36, 285–300 (1922b).Google Scholar
  526. Brown, R.: Experiments on the growth of fungi on culture media. Ann. Botany 37, 105–129 (1923).Google Scholar
  527. Bryant, A. E.: Comparison of anatomical and histological differences between roots of barley grown in aerated and nonaerated culture solutions. Plant Physiol. 9, 389–391 (1934).PubMedGoogle Scholar
  528. Bünning, E.: Entwicklungs- und Bewegungsphysiologie der Pflanze, 3. Aufl. Berlin-Göttingen-Heidelberg: Springer 1953.Google Scholar
  529. Bullen, J. J.: The yeast-like form of Cryptococcus farciminosus (Rivolta) (Histoplasma farciminosum). J. Path. Bact. 61, 117–120 (1949).Google Scholar
  530. Burkholder, P. R., and E. W. Sinnott: Morphogenesis of fungus colonies in submerged shaken cultures. Amer. J. Bot. 32, 424–431 (1945).Google Scholar
  531. Buscemi, P. A.: Littoral oxygen depletion produced by a cover of Elodea canadensis. Oikos 9, 239–245 (1958).Google Scholar
  532. Butcher, R. W.: Biological assessment of river pollution, in Symposium on Water Pollution. Proc. Linnean Soc. London 170, 159–165 (1959).Google Scholar
  533. Cannon, W. A.: Absorption of oxygen by roots when the shoot is in darkness or in light. Plant Physiol. 7, 673–684 (1932).PubMedGoogle Scholar
  534. Cannon, W. A., and E. E. Free: Physiological features of roots, with especial reference to the relation of roots to aeration of the soil. Carnegie Inst. Publ. No 368 (1925).Google Scholar
  535. Cantino, E. C., and G. F. Turian: Physiology and development of lower fungi (Phycomycetes). Ann. Rev. Microbiol. 13, 97–121 (1959).Google Scholar
  536. Carns, H. R., F. T. Addicott and R. S. Lynch: Some effects of water and oxygen on abscission in vitro. Plant Physiol. 26, 620–630 (1951).Google Scholar
  537. Carr, D. J., and Mary M. Ross: Studies in the morphology and physiology of germination of Chara gymnopitys A. Braun. II. Factors in germination. Unpublished 1959.Google Scholar
  538. Carr, S. G. M., and D. J. Carr: The germination of Tetrarrhena juncea R. Br. Unpublished 1957.Google Scholar
  539. Caughey, M. G.: Water relations of pocosins or bog shrubs. Plant Physiol. 20, 671–689 (1945).PubMedGoogle Scholar
  540. Cerighelli, R.: Sur les échanges gazeux de la racine avec l’atmosphère. C. R. Acad. Sci. (Paris) 171, 575–578 (1920).Google Scholar
  541. Chang, H. T., and W. E. Loomis: Effect of carbon dioxide on absorption of water and nutrients by roots. Plant Physiol. 20, 221–232 (1945).PubMedGoogle Scholar
  542. Chapin, P.: Einfluß der Kohlensäure auf das Wachstum. Flora (Jena) 91, 348–379 (1902).Google Scholar
  543. Chapman, H. W., L. S. Gleason and W. E. Loomis: The carbon dioxide content of field air. Plant Physiol. 29, 500–503 (1954).PubMedGoogle Scholar
  544. Cholodny, N. G.: Physiological effect of volatile organic substances on plants. Dokl. Akad. Nauk-SSSR, 62, 825–827 (1948).Google Scholar
  545. Cholodny, N. G.: Soil atmosphere as a source of organic nutrient substances for plants. Pedology 1, 6–29 (1951).Google Scholar
  546. Clements, F. E.: Aeration and air content. The role of oxygen in root activity. Carnegie Inst. Publ. No 315 (1921).Google Scholar
  547. Cochrane, V. W.: Physiology of Fungi. New York: J. Wiley & Sons 1958.Google Scholar
  548. Cohen, A. L.: The effect of ammonia on morphogenesis in the Acrasieae. Proc. nat. Acad. Sci. (Wash.) 39, 68–74 (1953).Google Scholar
  549. Collison, R. C.: Lysimeter investigations. IV. Water movement, soil temperatures and root activity under apple trees. Cornell Agric. exp. St. Bull. No. 237 (1935).Google Scholar
  550. Conway, Verona M.: Aeration and plant growth in wet soils. Bot. Rev. 6, 149–163 (1940).Google Scholar
  551. Cook, A. H., and J. A. Elvidge: Fertilization in the Fucaceae: investigations on the nature of the chemotactic substance produced by eggs of Fucus spiralis and F. vesiculosus. Proc. roy. Soc. B 138, 97–114 (1951).Google Scholar
  552. Cooper, L. H. N.: Some chemical considerations on the distribution of iron in the sea. J. Mar. biol. Ass. U. Kingd. 27, 314–321 (1948).Google Scholar
  553. Cooper, L. H. N.: Corenwinder, B.: Recherches chimiques sur la végétation. Fonctions des feuilles, origine du carbon. C.R. Acad. Sci. (Paris) 82, 1159–1160 (1876).Google Scholar
  554. Corner, E. J.: The legume seed. Phytomorphology 1, 117–150 (1951).Google Scholar
  555. Correns, C.: Das Keimen der beiderlei Früchte der Dimorphotheca pluvialis. Ber. dtsch. bot. Ges. 24, 173–176 (1906).Google Scholar
  556. Coult, D. A., and K. B. Vallance: Observations on the gaseous exchanges which take place between Menyanthes trifoliata L. and its environment. J. exp. Bot. 9, 403–407 (1958).Google Scholar
  557. Crasemann, Jean M.: The nutrition of Chytridium and Macrochytrium. Amer. J. Bot. 41, 302–310 (1954).Google Scholar
  558. Crasemann, Jean M.: Role of seed coats in delayed germination. Bot. Gaz. 42, 265–291 (1906).Google Scholar
  559. Crocker, W.: Growth of Plants. New York: Reinhold Publ. Co. 1948.Google Scholar
  560. Crocker, W., and Lela V. Barton: Physiology of seeds. Waltham, Mass.: Chronica Botanica 1953.Google Scholar
  561. Crocker, W., and W. E. Davis: Delayed germination in seed of Alisma Plantago. Bot. Gaz. 58, 285–321 (1914).Google Scholar
  562. Cunningham, T. M.: The natural regeneration of Eucalyptus regnans in association with logging. Ph. D. Thesis (unpublished), Melbourne 1958.Google Scholar
  563. Curtis, D. S.: Effect of oxygen supply in nutrient solution on avocado and citrus seedlings. Soil Sci. 67, 253–260 (1949).Google Scholar
  564. Das-Gupta, S. N.: Air pollution in relation to plant diseases. Proc. 44th Indian Sci. Congr. 1957, Pt. II, pp. 1–20.Google Scholar
  565. Davenport, S. J., and G. G. Morgis: Air Pollution a bibliography. Bureau of Mines, Wash., USA, Bulletin 537, 448 pp. 1954.Google Scholar
  566. Davis, W. E.: Primary dormancy, after-ripening and the development of secondary dormancy in embryos of Ambrosia trifida. Amer. J. Bot. 17, 58–76 (1930).Google Scholar
  567. Davis, W. E.: The development of dormancy in seeds of cocklebur (Xanthium). Amer. J. Bot. 17, 77–87 (1930).Google Scholar
  568. Dean, B. E.: Effect of soil type and aeration upon root systems of certain aquatic plants. Plant Physiol. 8, 203–222 (1933).PubMedGoogle Scholar
  569. Denny, F. E.: Oxygen requirements of Neurospora sitophila for formation of perithecia and growth of mycelium. Contr. Boyce Thompson Inst. 5, 95–102 (1933).Google Scholar
  570. De Villiers, J. L.: Some responses of Mcintosh apple seedlings growing with the roots in various concentrations of oxygen. Proc. Amer. Soc. horticult. Sci. 36, 86–89 (1938).Google Scholar
  571. Dimond, A. E., and J. G. Horsfall: Plant Chemotherapy, in Ann. Rev. Plant Physiol. 10, 257–276 (1959).Google Scholar
  572. Dimond, A. E., and E. M. Stoddard: Toxicity to greenhouse roses from paints containing mercury fungicides. Cornell. Agric. exp. St. Bull. No 595 (1955).Google Scholar
  573. Domsch, K. H.: Keimungsphysiologische Untersuchungen mit Sporen von Erisyphe graminis. Arch. Mikrobiol. 20, 163–175 (1954).PubMedGoogle Scholar
  574. Doorenbos, J., and S. J. Wellensiek: Photoperiodic control of floral induction. Ann. Rev. Plant Physiol. 10, 147–184 (1959).Google Scholar
  575. Drouhet, E., et F. Mariat : Rôle de l’anhydride carbonique dans le developpement de la phase levure de Sporotrichum schenckii. C. R. Acad. Sci. (Paris) 234, 2554–2556 (1952).Google Scholar
  576. D. S. I. R.: The investigation of atmospheric pollution. H. M. Stat. Office, London, 204 p. 1955.Google Scholar
  577. Dubrovina, A. V.: Presowing carbon monoxide fumigation treatment of cucumber seeds. Fiziol. Rasten. SSSR. 5, 16–23 (1958).Google Scholar
  578. Duggar, B. M.: Physiological studies with reference to the germination of certain fungus spores. Bot. Gaz. 31, 38–66 (1901).Google Scholar
  579. Durbin, R. D.: Factors affecting the vertical distribution of Rhizoctonia solani with special reference to CO2 concentration. Amer. J. Bot. 46, 22–25 (1959).Google Scholar
  580. Durell, W. D.: The effect of aeration on growth of the tomato in nutrient solution. Plant Physiol. 16, 327–341 (1941).PubMedGoogle Scholar
  581. Durrell, L. W.: Basisporium dry rot of corn. Iowa Agric. exp. St. Res. Bull. 84, 138–140 (1925).Google Scholar
  582. Ebertova, Helena: Redox potentials in soybean nodules during the vegetative period. Nature (Lond.) 184, 1046–1047 (1959).Google Scholar
  583. Edsall, J. T., and J. Wyman: Biophysical Chemistry, Vol. I. New York: Academic Press 1958.Google Scholar
  584. Edwards, T. I.: The germination and growth of Peltandra virginica in the absence of oxygen. Bull. Torrey bot. Club 60, 573–581 (1933).Google Scholar
  585. Eliasson, L.: The inhibitory effect of oxygen on the growth of wheat roots. Physiol. Plantarum (Cph.) 11, 572–584 (1958).Google Scholar
  586. Elliott, B. B., and A. C. Leopold: An inhibitor of germination and of amylase activity. Physiol. Plantarum (Cph.) 6, 65–77 (1953).Google Scholar
  587. Elliott, G. R. B.: Relation between the downward penetration of corn roots and water level in peat soil. Ecology 5, 175–178 (1935).Google Scholar
  588. El-Shishiny, E. D. H., and D. Thoday: Inhibitor of germination in Kochia indica. J. exp. Bot. 4, 10–22 (1953).Google Scholar
  589. Emerson, R., and E. C. Cantino: The isolation, growth and metabolism of Blastocladia in pure culture. Amer. J. Bot. 35, 157–171 (1948).Google Scholar
  590. Erickson, L. C.: Growth of tomato roots as influenced by oxygen in the nutrient solution. Amer. J. Bot. 33, 551–561 (1946).Google Scholar
  591. Erickson, L. C., and R. T. Wedding: Effects of ozonated hexene on photosynthesis and respiration of Lemna minor. Amer. J. Bot. 43, 32–36 (1956).Google Scholar
  592. Ernst, A.: Das Keimen der dimorphen Früchtchen von Synedrella nodiflora. Ber. dtsch. bot. Ges. 24, 450–458 (1906).Google Scholar
  593. Ernst, A.: Bastardierung als Ursache der Apogamie im Pflanzenreich. Jena: Gustav Fischer 1918.Google Scholar
  594. Ewart, A. J.: On the longevity of seeds. Proc. roy. Soc. Victoria 21, 1–210 (1908).Google Scholar
  595. Eyster, H. C.: Sensitivity of seeds to soaking. Amer. J. Bot. 23, 691 (1936).Google Scholar
  596. Eyster, H. C.: Cause of decreased germination of bean seeds soaked in water. Amer. J. Bot. 26, Suppl., 18 (1939).Google Scholar
  597. Eyster, H. C.: The cause of decreased germination of bean seeds soaked in water. Amer. J. Bot. 27, 652–659 (1940).Google Scholar
  598. Farkas, G. L., and G. A. Ledingham: The relation of self-inhibition of germination to the oxidative metabolism of stem rust uredospores. Canad. J. Microbiol. 5, 141–151 (1959).Google Scholar
  599. Farmer, J. B., and S. E. Chandler: On the influence of an excess of carbon dioxide in the air on the form and internal structure of plants. Proc. roy. Soc. B 70, 413–423 (1902).Google Scholar
  600. Fedorov, M. V.: Biological Fixation of Atmospheric Nitrogen. Moscow 1952.Google Scholar
  601. Fellows, H.: The influence of oxygen and carbon dioxide on the growth of Ophiobolus graminis in pure culture. J. Agric. Res. 37, 349–355 (1928).Google Scholar
  602. Ferguson, T. P., and G. Bond: Symbiosis of leguminous plants and nodule bacteria. V. The growth of red clover at different oxygen tensions. Ann. Botany, N.s. 18, 385–396 (1954).Google Scholar
  603. Fisher, A.: Wasserstoff- und Hydroxylionen als Keimungsreize. Ber. dtsch. bot. Ges. 25, 108–122 (1907).Google Scholar
  604. Fogg, G. E.: The metabolism of Algae. London: Methuen & Co. 1953.Google Scholar
  605. Fogg, G. E.: Relationships between metabolism and growth in plankton algae. J. gen. Microbiol. 16, 294–297 (1957).PubMedGoogle Scholar
  606. Fogg, G. E.: Dissolved organic matter in oceans and lakes. New Biol. 29, 31–48 (1958).Google Scholar
  607. Forsyth, F. R.: The nature of the inhibiting substance emitted by germinating uredospores of Puccinia graminis var. tritici, Canad. J. Bot. 33, 363–373 (1955).Google Scholar
  608. Frampton, V. L., and P. M. Marsh: Respiration of conidia of Sclerotinia fructicola. Phytopathology 31, 9 (1941).Google Scholar
  609. Free, E. E.: The effect of aeration on the growth of buckwheat in water cultures. Circular Johns Hopk. Univ., N.s. 293, 198–199 (1917).Google Scholar
  610. French, R.C., L.M. Massey jr. and R. L. Weintraub: Properties of a volatile fraction from uredospores of Puccinia graminis var. tritici affecting their germination and development. II. Some physical and chemical properties. Plant Physiol. 32, 389–393 (1957).PubMedGoogle Scholar
  611. French, B.C., and R. L. Weintratjb: Pelargonaldehyde as an endogenous germination stimulator of wheat rust spores. Arch. Biochem. Biophys. 72, 235–237 (1957).PubMedGoogle Scholar
  612. Galston, A. W., and S. M. Siegel: Anti-peroxidative action of the cobaltous ion and its consequences for plant growth. Science 120, 1070 (1954).PubMedGoogle Scholar
  613. Garrett, S. D.: Soil conditions and the root-infecting fungi. Biol. Rev. 13, 159–185 (1937).Google Scholar
  614. Garrett, S. D.: Biology of root-infecting fungi. Cambridge: Cambridge University Press 1956.Google Scholar
  615. Gassner, G.: Beiträge zur Frage der Lichtkeimung. Z. Bot. 7, 609–661 (1915).Google Scholar
  616. Gessner, F.: Hydrobotanik, Bd. II. Berlin: VEB Verl. der Wiss. 1959.Google Scholar
  617. Gibor, A.: Culture of Brine Algae. Biol. Bull. 11, 223–229 (1956).Google Scholar
  618. Gilbert, S. G., and J. W. Shive: The significance of oxygen in nutrient substrates for plants. I. The oxygen requirement. Soil Sci. 53, 143–152 (1942).Google Scholar
  619. Girton, R. E.: The growth of Citrus seedlings as influenced by environmental factors. Univ. Calif. Pubs. Agric. Sci. 5, 83–117 (1927).Google Scholar
  620. Gitterman, C. O., and S. E. Knight: Carbon dioxide fixation into amino acids of Penicillium chrysogenum. J. Bact. 64, 223–231 (1952).PubMedGoogle Scholar
  621. Gladstone, G. P., P. Fildes and G. M. Richardson: Carbon dioxide as an essential factor in the growth of bacteria. Brit. J. exp. Path. 16, 335–348 (1935).Google Scholar
  622. Glasstone, V. F. C.: The passage of air through plants and its relationship to measurements of respiration and assimilation. Amer. J. Bot. 29, 156–159 (1942).Google Scholar
  623. Goddard, D. R.: The respiration of cells and tissues. In R. Höber, Physical Chemistry of cells and tissues, p. 373–444, London: J. A. Churchill 1945.Google Scholar
  624. Goddard, D. R.: The reversible heat activation of respiration in Neurospora. Cold Spr. Harb. Symp. quant. Biol. 7, 362–376 (1939).Google Scholar
  625. Golding, N. S.: The gas requirements of molds I. A preliminary report on the gas requirements of Penicillium roquefortii. J. Dairy Sci. 20, 319–343 (1937).Google Scholar
  626. Golding, N. S.: The gas requirement of molds. II. The oxygen requirements of Pénicillium roquefortii in the presence of nitrogen as diluent and the absence of carbon dioxide. J. Dairy Sci. 23, 879–889 (1940 a).Google Scholar
  627. Golding, N. S.: The gas requirements of molds. III. The effect of various concentrations of carbon dioxide on the growth of Penicillium roquefortii in air. J. Dairy Sci. 23, 891–898 (1940b).Google Scholar
  628. Goodwin, R. H., and D. R. Goddard: The oxygen consumption of isolated woody tissues. Amer. J. Bot. 27, 234–237 (1940).Google Scholar
  629. Gottlieb, D.: The physiology of spore germination in fungi. Bot. Rev. 16, 229–257 (1950).Google Scholar
  630. Gottlieb, D., and H.W. Anderson: Morphological and physiological factors in streptomycin production. Bull. Torrey bot. Club. 74, 293–302 (1947).Google Scholar
  631. Grafe, V., and O. Richter: Über den Einfluß der Narkotica auf die Anatomie und die chemische Zusammensetzung von dem Keimling. Anz. Akad. Wiss. Wien., math.-nat. Kl. 48, 536–538 (1911).Google Scholar
  632. Grant-Lipp, Alison E., and L. A. T. Ballard: The breaking of seed dormancy of some legumes by carbon dioxide. Aust. J. Agric. Res. 10, 495–499 (1959).Google Scholar
  633. Gussewa, K.: Über die geschlechtliche und ungeschlechtliche Fortpflanzung von Oedogonium capillare Ktz. im Lichte der sie bestimmenden Verhältnisse. Planta (Berl.) 12, 293–326 (1930).Google Scholar
  634. Hackett, D. P., and H. A. Schneidermann: Terminal oxidases and growth in plant tissues. I. The terminal oxidase mediating growth of Avena coleoptile and Pisum stem sections. Arch. Biochem. 47, 190–204 (1953).PubMedGoogle Scholar
  635. Hamilton, P.B., A. L. Shug and P. W. Wilson: Hydrogenase in biological Nitrogen fixation. Proc. nat. Acad. Sci. (Wash.) 43, 297–301 (1957).Google Scholar
  636. Harley, J. L.: The biology of mycorrhiza. London: Leonhard Hill 1959.Google Scholar
  637. Harrington, G. T.: Further studies of the germination of Johnson grass seeds. Proc. Ass. Off. Seed Anal., N. Amer. 9/10, 71–76 (1917).Google Scholar
  638. Harrington, G. T.: Comparative chemical analyses of Johnson grass seeds and Sudan grass seeds. Proc. Ass. Off. Seed. Anal., N. Amer. 11, 58 to 63 (1919).Google Scholar
  639. Harrington, G. T.: Forcing the germination of freshly harvested wheat and other cereals. J. agric. Res. 23, 79–100 (1923).Google Scholar
  640. Hart, Helen: Factors affecting the development of flax rust, Melampsora lini (Pers.). Lev. Phytopathology 16, 185–205 (1926).Google Scholar
  641. Harvey, H. W.: The chemistry and fertility of sea waters. London: Cambridge University Press 1955.Google Scholar
  642. Haselhoff, E., and G. Lindau: Die Beschädigung der Vegetation durch Rauch. Leipzig: Gebrüder Bornträger 1903.Google Scholar
  643. Hawker, Lilian E.: Physiology of fungi. London: Cambridge University Press 1950.Google Scholar
  644. Hayward, H. E., and L. Bernstein: Plant growth relationships on salt-affected soils. Bot. Rev. 24, 584–635 (1958).Google Scholar
  645. Hemberg, T.: Wachstumshemmende und wachstumsfördernde Stoffe bei der Kartoffel. Ark. Bot. 33, 2 (1946).Google Scholar
  646. Hemberg, T.: Significance of growth inhibiting substances and auxins for the rest-period of the potato tuber. Physiol. Plantarum (Cph.) 2, 24–36 (1949).Google Scholar
  647. Hendrix, J. W., and H. R. Hall: The relationship of certain leaf characteristics and flower colour to atmospheric fluoride sensitivity in Gladiolus. Proc. Amer. Soc. horticult Sci. 72, 503–510 (1958).Google Scholar
  648. Heslop-Harrison, J.: The experimental modification of sex expression in flowering plants. Biol. Rev. 32, 1–51 (1957).Google Scholar
  649. Heslop-Harrison, J., and Yolande Heslop-Harrison: Studies on flowering plant growth and organogenesis. II. The modification of sex expression in Cannabis sativa by carbon monoxide. Proc. roy. Soc. Edinb. B 66, 424–434 (1957a).Google Scholar
  650. Heslop-Harrison, J., and Yolande Heslop-Harrison: The effect of carbon monoxide on sexuality in Mercurialis ambigua L. fils. New Phytologist 56, 352–355 (1957b).Google Scholar
  651. Hesselman, H.: Über den Sauerstoffgehalt des Bodenwassers und dessen Einwirkung auf die Versumpfung des Bodens und das Wachstum des Waldes. Medd. Stat. Skogsförsöks-Anstalt (Sweden), 177 S. 1910.Google Scholar
  652. Hesselman, H.: Studies on nitrate formation in natural habitats and its importance in plant ecology. J. Ecology 7, 210–211 (1919).Google Scholar
  653. Heumann, M.: Über die Wachstumsbeschleunigung der Pflanzen bei vermindertem Sauerstoff-Druck. Bot. Arch. 4, 413–443 (1923).Google Scholar
  654. Hewitt, E. J.: Sand and Water culture methods used in the study of plant nutrition. Commonwealth Agric. Bureau, East Mailing 1952.Google Scholar
  655. Hewitt, L. F.: Oxidation-reduction potentials in bacteriology and biochemistry, 6th edit. Edinburgh: E. S. Livingstone 1950.Google Scholar
  656. Hewitt, L. F.: Influence of hydrogen-ion concentration and oxidation-reduction conditions on bacterial behaviour, in Microbial Ecology. 7th Symp. Soc. Gen. Microbiol. London: Cambridge University Press 1957.Google Scholar
  657. Hoagland, D. R., and T. C. Broyer: General nature of the process of salt accumulation by roots with description of experimental methods. Plant Physiol., 11, 471–507 (1936).PubMedGoogle Scholar
  658. Hoestein, A. V., and B. V. Hofstein: Factors influencing cell division and vegetative morphogenesis of Ophiostoma multiannulatum. Physiol. Plantarum (Cph.) 11, 106–117 (1958).Google Scholar
  659. Hollis, J. P.: Oxygen and carbon dioxide relations of Fusarium oxysporum Schlecht., and Fusarium eumartii Carp. Phytopathology 38, 761–775 (1948).Google Scholar
  660. Hopkins, H. T., A. W. Specht and S. B. Hendricks: Growth and nutrient accumulation as controlled by oxygen supply to plant roots. Plant Physiol. 25, 193–209 (1950).PubMedGoogle Scholar
  661. Howard, A.: The effect of grass on trees. Proc. roy. Soc. B 97, 284–321 (1925).Google Scholar
  662. Huber, B.: Recording gaseous exchange under field conditions. In: The physiology of forest trees, edit. K. V. Thimann. New York: Ronald Press Co. 1958.Google Scholar
  663. Hull, H. M., F. W. Went and N. Yamada: Fluctuations in sensitivity of the Avena-test due to air pollutants. Plant Physiol. 29, 182–187 (1954).PubMedGoogle Scholar
  664. Hunter, C.: The aerating system of Vicia faba. Ann. Botany 29, 627–634 (1915).Google Scholar
  665. Hutchinson, G. E.: Limnological studies in Connecticut. VII. A critical axamination of the supposed relationship between phytoplankton periodicity and chemical changes in lake waters. Ecology 25, 3–26 (1944).Google Scholar
  666. Hyde, E. O. C.: The function of the hilum in some Papilionaceae in relation to the ripening of the seed and the permeability of the testa. Ann. Botany, N. s. 18, 241–256 (1954).Google Scholar
  667. Jaffe, L. F.: Morphogenesis in lower plants. Ann. Rev. Plant Physiol. 9, 359–384 (1958).Google Scholar
  668. Jahn, J. L.: The effect of aeration and lack of CO2 on growth of bacteria-free cultures of protozoa. Proc. Soc. exp. Biol. (N.Y.) 33, 494–498 (1936).Google Scholar
  669. James, G.M., and W. O. James: The formation of pyruvic acid in barley respiration. New Phytologist 39, 266–270 (1940).Google Scholar
  670. James, W. O.: Plant respiration. Oxford: Clarendon Press 1953.Google Scholar
  671. Jesenko, F.: Einige neue Verfahren die Ruheperiode der Holzgewächse abzukürzen. Ber. dtsch. bot. Ges. 30, 81–93 (1912).Google Scholar
  672. Johnson, F., D. F. Allmendinger, V. L. Miller and C. J. Gould: Leaf scorch of Gladiolus caused by atmospheric fluoric effluents. Phytopathology 40, 230 to 246 (1950).Google Scholar
  673. Johnson, L. P. V.: General preliminary studies on the physiology of delayed germination in Avena fatua. Canad. J. Res., C 13, 283–300 (1935).Google Scholar
  674. Jones, E. W.: The storage of acorns in water. Forestry 31, 163–166 (1958).Google Scholar
  675. Jones, L. H., W. B. Shepardson and C.A. Peters: The function of manganese in the assimilation of nitrates. Plant Physiol. 24, 300–306 (1949).PubMedGoogle Scholar
  676. Kandler, O.: Untersuchungen über den Zusammenhang zwischen Atmungsstoffwechsel und Wachstumsvorgängen bei in vitro kultivierten Maiswurzeln. Z. Naturforsch. 5b, 203–211 (1950).Google Scholar
  677. Karsten, G.: Über die Entwicklung der Schwimmblätter bei einigen Wasserpflanzen. Bot. Z. 36, 565; 37, 581 (1888).Google Scholar
  678. Ketchum, B. H.: The viability of coliform bacteria in sea-water and the dispersion of pollution in tidal estuaries and harbors. Proc. 6th Intern. Congr. Microbiol. (Rome) 7, 368–369 (1953).Google Scholar
  679. Kidd, F.: The controlling influence of carbon dioxide in the maturation dormancy and in germination of seeds. Proc. roy. Soc. B 87, 408–421, 609–625 (1914).Google Scholar
  680. Kidd, F.: Laboratory experiments on the sprouting of potatoes in various gas mixtures. New Phytologist 18, 248–252 (1919).Google Scholar
  681. Kidd, F., and C. West: The controlling influence of carbon dioxide. IV. The production of secondary dormancy in seeds of Brassica alba following treatment with carbon dioxide, and the relation of this phenomenon to the question of stimuli in growth processes. Ann. Botany 31, 457–487 (1917).Google Scholar
  682. Kidd, F., and C. West: The effects of soaking seeds in water. Ann. appl. Biol. 5, 1–10 (1918).Google Scholar
  683. Klaus, H.: Untersuchungen über Alternaria solani Jones et Grout, insbesondere über seine Pathogenität an Kartoffelknollen in Abhängigkeit von den Außenfaktoren. Phytopath. Z. 13, 126–195 (1941).Google Scholar
  684. Kluyver, A. J., and C. B. van Niel: The microbe’s contribution to biology. Cambridge, Mass.: Prather Lectures, Harvard University 1956.Google Scholar
  685. Knight, L. I., and W. Crocker: Toxicity of smoke. Bot. Gaz. 55, 337–371 (1913).Google Scholar
  686. Konitz, H. G., and F. W. Went: The physiological action of smog on plants. I. Initial growth and transpiration studies. Plant Physiol. 28, 50–62 (1952).Google Scholar
  687. Kramer, P. J.: Plant and soil water relationships. New York: McGraw-Hill Book Co. 1949.Google Scholar
  688. Kramer, P. J., W. S. Riley and T. T. Bannister: Gas exchange of cypress knees. Ecology 33, 117–121 (1952).Google Scholar
  689. Krebs, H. A.: Carbon dioxide assimilation in heterotrophic organisms. Ann. Rev. Biochem. 12, 529–550 (1943).Google Scholar
  690. Küster, E.: Pathologische Pflanzenanatomie, 3. Aufl. Jena: Gustav Fischer 1925.Google Scholar
  691. Kugler, I.: Zur Frage der Abgabe keimungshemmender Stoffe durch Samen. Beitr. Biol. Pflanz. 31, 313–332 (1955).Google Scholar
  692. Kursanov, A. L.: Plant physiology in the USSR. In: Ann. Rev. Plant Physiol. 7, 401–436 (1956).Google Scholar
  693. Laing, H. E.: The composition of the internal atmosphere of Nuphar advenum and other water-plants. Amer. J. Bot. 27, 861–868 (1940).Google Scholar
  694. Laing, H. E.: Effect of concentration of oxygen and pressure of water on growth of rhizomes of semi-submerged water-plants. Bot. Gaz. 102, 712–724 (1941).Google Scholar
  695. Lambert, E. B.: Effect of excess carbon dioxide on growing mushrooms. J. agric. Res. 47, 599–608 (1933).Google Scholar
  696. Langdon, S. C.: Carbon monoxide occurrence free in kelp (Nereocystis luetkeana). J. Amer. chem. Soc. 39, 149–156 (1917).Google Scholar
  697. Langdon, S. C., and W. R. Gailey: Carbon monoxide, a respiration product of Nereocystis luetkeana. Bot. Gaz. 70, 230–239 (1920).Google Scholar
  698. Larmour, R. K., J. S. Clayton and C. L. Wrenshall: A study of the respiration and heating of damp wheat. Canad. J. Res. 12, 627–645 (1935).Google Scholar
  699. Larmour, R. K., H. R. Sallans and B.M. Craig: Respiration of the whole and hulled sunflower seed and of flax seed. Canad. J. Res., F 22, 9–18 (1944).Google Scholar
  700. Lehmann, E.: Zur Kenntnis des anaeroben Wachstums höherer Pflanzen. Jb. wiss. Bot. 49, 61–90 (1911).Google Scholar
  701. Lehmann, E., and F. Aichele: Keimungsphysiologie der Gräser (Gramineen). Stuttgart: Ferdinand Enke 1931.Google Scholar
  702. Leonard, J., and J. A. Pinckard: Effect of various oxygen and carbon dioxide concentrations on cotton root development. Plant Physiol. 21, 18–36 (1946).PubMedGoogle Scholar
  703. Levine, M. : Differentiation of carrot tissue grown in vitro. Bull. Torrey bot. Club 74, 321–328 (1947).Google Scholar
  704. Lewcock, H. K.: The use of acetylene to induce flowering in pineapple plants. Queensland Agric. J. 48, 532–543 (1937).Google Scholar
  705. Leyton, L., and L. Z. Rousseau: Root growth of tree seedlings in relation to aeration. In: The physiology of Forest trees, edit. K. V. Thimann. New York: Ronald Press Co. 1958.Google Scholar
  706. L’Héritier, Ph.: The CO2-sensitivity problem in Drosophila. Cold Spr. Harb. Symp. quant. Biol. 16, 99–112 (1951).Google Scholar
  707. Libby, W.F.: Radiocarbon dates. II. Science 114, 291–296 (1951).PubMedGoogle Scholar
  708. Liebman, H.: Handbuch der Frischwasser- und Abwasserbiologie. München: R. Oldenbourg 1958.Google Scholar
  709. Lin, C. K.: Germination of conidia of Sclerotinia fructicola with special reference to the toxicity of copper. Cornell Agric. exp. St. Mem. No 233, 30 p. (1940).Google Scholar
  710. Liverman, J. L.: The physiology of flowering. Ann. Rev. Plant Physiol. 6, 177–210 (1955).Google Scholar
  711. Livingstone, B. E., and R. Beal: The soil as direct source of carbon dioxide for ordinary plants. Plant Physiol. 9, 237–259 (1934).Google Scholar
  712. Loehwing, W. F.: Physiological aspects of the effect of continuous soil aeration on plant growth. Plant Physiol. 9, 567–584 (1934).PubMedGoogle Scholar
  713. Loftfield, J. V. G.: The behaviour of stomata. Carnegie Inst. Publ. No 314 (1921).Google Scholar
  714. Loomis, W. F.: Sexual differentiation in Hydra: control by carbon dioxide. Science 126, 735–739 (1957).PubMedGoogle Scholar
  715. Lopriore, G. : Über die Einwirkung der Kohlensäure auf das Protoplasma der lebenden Pflanzenzelle. Jb. wiss. Bot. 28, 531–626 (1895).Google Scholar
  716. Lucas, C.E.: External metabolites in the sea. Canad. J. Microbiol. 2, 665–672 (1955).Google Scholar
  717. Lundegirdh, D. H.: Der Kreislauf der Kohlensäure in der Natur. Jena: Gustav Fischer 1924.Google Scholar
  718. Lyon, T. L., H. O. Buckman and N. C. Brady: The nature and properties of soils, 5th edit. New York: Macmillan & Co. 1952.Google Scholar
  719. MacConnell, J. T. : The oxygen factor in the development and function of the root nodules of alder. Ann. Botany, N.s. 23, 261–268 (1959).Google Scholar
  720. Mack, W. B.: The relation of temperature and the partial pressure of oxygen to respiration and growth in germinating wheat. Plant Physiol. 5, 1–68 (1930).PubMedGoogle Scholar
  721. Magie, R. O.: Variability of monosporic cultures of Coccomyces hiemalis. Phytopathology 25, 131–159 (1935).Google Scholar
  722. Magness, J.R.: Composition of gases in intercellular spaces of apples and potatoes. Bot. Gaz. 70, 308–316 (1920).Google Scholar
  723. Matthews, M. A.: The Earth’s Carbon Cycle. New Scientist (G.B.) 7, 644–646 (1959).Google Scholar
  724. Maze, P. : Recherches sur le rôle de l’oxygène dans la germination. Ann. Inst. Pasteur. 14, 350–368 (1900).Google Scholar
  725. McCallan, S. E. A.: Fungicide investigations. Chapt. 11. In: Crocker, Growth of plants. New York: Reinhold Publ. 1948.Google Scholar
  726. McLeod, D. M.: Nutritional studies on the genus Hirsutella. Canad. J. Bot. 37, 695–714 (1959).Google Scholar
  727. McLeod, J. W., and J. Gordon: Catalase production and sensitiveness to hydrogen peroxide amongst bacteria. J. Path. Bact. 26, 326–331 (1923).Google Scholar
  728. McLeod, J. W., and J. Gordon: The problem of intolerance of oxygen by anaerobic bacteria. J. Path. Bact. 26, 332–340 (1923).Google Scholar
  729. McNew, G. L.: The effects of soil fertility. In: Plant diseases, Yearbook of Agriculture, p. 100–114, U.S.D.A. Wash., 1953.Google Scholar
  730. McQuilkin, W. E.: Root development of pitch pine with some comparative observations on shortleaf pine. J. Agric. Res. 51, 983–1016 (1935).Google Scholar
  731. Meetham, A. R. : Atmospheric Pollution. London: Pergamon Press 1952.Google Scholar
  732. Mehler, A. H.: Studies on reactions of illuminated chloroplasts. I. Mechanism of the reduction of oxygen and other Hill reagents. Arch. Biochem. Biophys. 33, 65–77 (1951).PubMedGoogle Scholar
  733. Meigen, W.: Material aus der Atmosphäre. In Handbuch der Bodenlehre von E. Blanck, Bd. 1, S. 145–151. Berlin: Springer 1929.Google Scholar
  734. Melchers, G., u. L. Bergmann: Untersuchungen an Kulturen von haploiden Geweben von Antirrhinum majus. Ber. dtsch. bot. Ges. 71, 459–473 (1958).Google Scholar
  735. Melchers, G., u. Ursula Engelmann: Die Kultur von Pflanzengewebe in flüssigem Medium mit Dauerbelüftung. Naturwiss. 42, 564–565 (1955).Google Scholar
  736. Melsted, S. W., T. Kurtz and R. Bray: Hydrogen peroxide as an oxygen fertilizer. Agron. J. 41, 97 (1949).Google Scholar
  737. Mer, C. L.: Further observations on the effect of carbon dioxide on the growth of etiolated Avena seedlings. Ann. Botany, N.s. 21, 13–22 (1957).Google Scholar
  738. Mer, C. L.: The analysis of correlative growth in the etiolated seedling in relation to carbon dioxide and nutrient supply. Ann. Botany, N.s. 23, 177–194 (1959).Google Scholar
  739. Mer, C. L., and F. J. Richards: Carbon dioxide and the extension growth of etiolated oat seedlings. Nature (Lond.) 165, 179–180 (1950).Google Scholar
  740. Metsävainio, K. : Untersuchungen über das Wurzelsystem der Moorpflanzen. Ann. Bot. Soc. zool.-bot. fenn. „Vanamo“ 1, No 1 (1931).Google Scholar
  741. Michael, G., and W. Bergmann : Bodenkohlensäure und Wurzelwachstum. Z. Pflanzenernährg, Düng. u. Bodenk. 65, 180–194 (1954).Google Scholar
  742. Middleton, J. T., A. S. Crafts, R. F. Brewer and O. C. Taylor: Plant damage by air pollution. Calif. Agric. 10 (6), 9–12 (1956).Google Scholar
  743. Middleton, J. T., and A. O. Paulus: The identification and distribution of air pollutants through plant response. Arch. industr. Hlth 14, 526–532 (1956).Google Scholar
  744. Miller, E. C.: Plant Physiology, 2nd edit. New York: McGraw-Hill Book Comp. 1938.Google Scholar
  745. Miller, E. C., and G. O. Burr: Carbon dioxide balance at high light intensities. Plant Physiol. 10, 93–114 (1935).PubMedGoogle Scholar
  746. Miller, V. L.: The effect of atmospheric fluoride on Washington agriculture. In: U.S. Tech. Conf. on Air Pollution, edit. L. C. McCabe. New York: McGraw-Hill Book Comp. 1952.Google Scholar
  747. Milner, M., and W. P. Geddes : Grain storage studies. II. The effect of aeration, temperature and time on the respiration of soybeans containing excessive moisture. Cereal Chem. 22, 484–501 (1945).Google Scholar
  748. Minina, P. G., and L. G. Tylkina: Physiological study of the effect of gases upon sex determination in plants. Doklady Akad. Nauk SSSR. 55, 165–168 (1947).Google Scholar
  749. Miyachi, S., S. Izawa and H. Tamiya: Effect of oxygen on the capacity of carbon dioxide fixation by green algae. J. Biochim. (Tokio) 42, 221–244 (1955).Google Scholar
  750. Montemartini, L. : Sull l’influenza di atmosfere rieche de bossido di carbonio sopra lo svillupo e la struttura delle foglie. Atti Ist. Bot. Pavia 3, 83 (1894).Google Scholar
  751. Moran, T., E. C. Smith and R. G. Tomkins: The inhibition of mould growth on meat by carbon dioxide. J. Soc. chem. Industr. 51, 114–116 (1932).Google Scholar
  752. Morinaga, T.: Catalase activity and the aerobic and anaerobic germination of rice. Bot. Gaz. 79, 73–84 (1925).Google Scholar
  753. Morinaga, T.: Germination of seeds under water. Amer. J. Bot. 13, 126–140 (1926).Google Scholar
  754. Morinaga, T.: The favourable effect of reduced oxygen supply upon the germination of certain seeds. Amer. J. Bot. 13, 159–166 (1926b).Google Scholar
  755. Mortimer, D. C.: Some short-term effects of increased carbon dioxide concentration on photosynthetic assimilation in leaves. Canad. J. Bot. 37, 1191–1201 (1959).Google Scholar
  756. Nabokich, A. J. : Zur Physiologie des anaeroben Wachstums der höheren Pflanzen. Beih. bot. Zbl. 13, 272–332 (1903).Google Scholar
  757. Nabokich, A. J. : Temporäre Anaerobiose höherer Pflanzen. Landwirtsch. Jb. 38, 51–194 (1909).Google Scholar
  758. Nagai, I.: Stome studies on the germination of the seed of Oryza sativa. J. Agric. Coll. Tokyo Imp. Univ. 3, 109–158 (1916).Google Scholar
  759. Nance, J.: Inhibition of nitrate assimilation in excised wheat roots by various respiratory poisons. Plant Physiol. 25, 722–735 (1950).PubMedGoogle Scholar
  760. Nickerson, W. J.: Medical Mycology. Ann. Rev. Microbiol. 7, 245–265 (1953).Google Scholar
  761. Nickerson, W. J.: Biochemistry of Morphogenesis. London: Pergamon Press 1958.Google Scholar
  762. Nickerson, W. J., W. A. Tabor and G. Falcone: Physiological bases of morphogenesis in fungi. V. Effect of selenite and tellurite on cellular division of yeastlike fungi. Canad. J. Microbiol. 2, 575–584 (1956).Google Scholar
  763. Ohga, I.: A comparison of the life activity of century-old and recently harvested Indian lotus fruits. Amer. J. Bot. 13, 760–765 (1926a).Google Scholar
  764. Ohga, I.: The germination of century-old and recently harvested Indian lotus fruits, with special reference to the effect of oxygen supply. Amer. J. Bot. 13, 754–759 (1926b).Google Scholar
  765. Ohtsuki, T.: Obligate tonophily of a fungus which grows on glass. Papers, IX. Intern. Bot. Congr. Montreal, 1959.Google Scholar
  766. Okada, Y.: Study of Euryale ferox Salisb. V. On some features in the physiology of the seed with special respect to the problem of the delayed germination. Sci. Rep. Tohoku Imp. Univ. IV 5, 41–116 (1930).Google Scholar
  767. Overbeek, J. van: Use of growth substances in tropical agriculture. In: Plant Growth Substances, edit. Folke Skoog, p. 225–244. University Wisconsin Press 1951.Google Scholar
  768. Oxley, T. A., and J.D. Jones: Apparent respiration of wheat grains and its relation to a fungal mycelium beneath the epidermis. Nature (Lond.) 154, 826–827 (1944).Google Scholar
  769. Pavolini, A. F. : Contributo allo studio della eterocarpia. Boll. Soc. Bot. ital. (Firenze) 1910, 138–146.Google Scholar
  770. Pearsall, W. H. : The investigation of wet soils and its agricultural implications. Empire J. exp. Agric. 18, 289–298 (1950).Google Scholar
  771. Pearsall, W. H. : The soil complex in relation to plant communities. J. Ecology 26, 180–209, 298–318 (1938).Google Scholar
  772. Pearsall, W. H., and C. H. Mortimer: Oxidation-reduction potentials in waterlogged soils, natural waters and muds. J. Ecology 27, 483–501 (1939).Google Scholar
  773. Penningsfield, F.: Über Atmungserscheinungen an einigen Bodenprofilen. Z. Pflanzenernährg, Düng. u. Bodenk. 50, 135–164 (1950).Google Scholar
  774. Persidsky, D. J., and S. A. Wilde: The effect of volatile substances released by soil humus and composts on the growth of excised roots. Plant Physiol. 29, 484–486 (1954).PubMedGoogle Scholar
  775. Pfeffer, W. : The physiology of plants, 2nd edit. Trans. A. J. Ewart. Oxford: Clarendon Press 1903.Google Scholar
  776. Pfeiffer, Norma E.: Longevity of pollen of Lilium and hybrid Amaryllis. Contrib. Boyce Thompson Inst. 8, 141–150 (1936).Google Scholar
  777. Pfeiffer, Norma E.: Effect of lyophilization on the viability of Lilium pollen. Contrib. Boyce Thompson Inst. 18, 153–166 (1955).Google Scholar
  778. Phillips, J. W. : Studies on fermentation in rice and barley. Amer. J. Bot. 34, 62–72 (1947).Google Scholar
  779. Platz, G. A., L. W. Durrell and Mary E. Howe: Effect of carbon dioxide upon the germination of chlamydo-spores of Ustilago zeae (Beckm.). Ung. J. Agric. Res. 34, 137–147 (1927).Google Scholar
  780. Plunkett, B. E.: The influence of factors of the aeration complex and light upon fruit body form in pure cultures. Ann. Botany, N.s. 20, 563–586 (1956).Google Scholar
  781. Plunkett, M. A., and N. W. Rakestraw: Dissolved organic matter in the sea. Pap. Mar. Biol. and Oceanogr., Deep Sea Res. Suppl. 3, 12–14 (1955).Google Scholar
  782. Pontovich, V. E.: (Utilization of carbon dioxide in synthetic processes of heterotrophic organisms.) Izv. Akad Nauk SSSR., Sér. Biol. 5, 120–135 (1951).PubMedGoogle Scholar
  783. Popp, H. W., and Florence Brown: A review of recent work on the effect of ultra-violet light on seed plants. Bull Torrey bot. Club 60, 161–200 (1933).Google Scholar
  784. Popp, H. W., and Florence Brown: The effect of ultra-violet radiation upon seed plants. In: Biological effects of radiation, edit B. M. Duggar, vol. II. New York: McGraw-Hill Book Comp. 1936.Google Scholar
  785. Popstov, A. O.: Vtorichnyi pokoi u semian krymsagyza. Dokl. Akad. Nauk SSSR. 2, 593–597 (1935).Google Scholar
  786. Porodko, T.: Einfluß der Sauerstoffspannung auf pflanzliche Mikroorganismen. Jb. wiss. Bot. 41, 1–64 (1904).Google Scholar
  787. Porter, R. H.: Recent developments in seed technology. Bot. Rev. 15, 221–344 (1949).Google Scholar
  788. Prat, S.: Die Vegetation der kohlensäurehaltigen Quellen (Oscillatoria carboniciphila n. sp.). Arch. Protistenk. 68, 415–433 (1929).Google Scholar
  789. Prevot, P. C.: La néoformation des bourgeons chez les végétaux. Mém. Soc. roy. Sci. Liège, Sér. IV 3, 175–340 (1939).Google Scholar
  790. Pring, I. N.: The presence of ozone in the upper atmosphere. Proc. roy. Soc. A 90, 204–215 (1914).Google Scholar
  791. Pringsheim, E. G., R. A. Jedlitsch and Br. Görlich: Untersuchungen über Samenquellung. II. Mitt. Die Atmung quellender Samen. Planta (Berl.) 15, 419–458 (1931).Google Scholar
  792. Provasoli, L., and L. J. Pintner: Ecological implications of in vitro nutritional requirements of algal flagellates. Ann. N.Y. Acad. Sci. 56, 839–851 (1953).PubMedGoogle Scholar
  793. Quartley, Christine E., and E. R. Turner: Further exneriments on the inhibition of respiration of peas, induced by oxygen at high pressures. J. exp. Bot. 8, 250–255 (1957).Google Scholar
  794. Raalte, M. H. van: On the oxygen supply to rice roots. Ann. Jard. bot. Buitenzorg. 50, 99–114 (1940).Google Scholar
  795. Rabinowitch, E. I.: Photosynthesis and related processes, vol. I. New York: Interscience Publ. 1945.Google Scholar
  796. Ranson, S. L., and A. Harrison: Experiments on growth in length of plant organs. I. A recording auxanometer. J. exp. Bot. 6, 75–79 (1955).Google Scholar
  797. Ranson, S. L., and B. Parija : Experiments on growth in length of plant organs. II. Some effects of depressed oxygen concentrations. J. exp. Bot. 6, 80–93 (1955).Google Scholar
  798. Reed, W. E.: The effect of plants on the physical properties of a Dundirk silty clay loam, and the effect of soil aeration on plant growth and composition. Ph. D. Thesis, Cornell Univ. 1946. Cit. in M. B. Russell 1952.Google Scholar
  799. Reid, Mary E.: Relation of composition of seed and the effects of light to the growth of seedlings. Amer. J. Bot. 16, 747–769 (1929).Google Scholar
  800. Reinert, J.: Morphogenese und ihre Kontrolle an Gewebekulturen aus Karotten. Naturwiss. 45, 344–345 (1958).Google Scholar
  801. Rhoads, A. S. : The black zone formed by wood-destroying fungi. N.Y. St. College, Forestry Tech. Bull. 8 (1917).Google Scholar
  802. Rice, T. R.: Biotic influences on population growth of planktonic algae. U.S. Fish. Wildlife Serv., Fishery Bull. 87, 227–245 (1954).Google Scholar
  803. Richards, E. H. : Dissolved oxygen in rain water. J. Agric. Sci. 8, 331–337 (1917).Google Scholar
  804. Richards, H. M., and D. T. Mac Dougal: The influence of carbon monoxide and other gases upon plants. Bull. Torrey bot. Club 31, 57–66 (1904).Google Scholar
  805. Richards, L. A. : Diagnosis and improvement of saline and alkali soils. U.S.D.A. Agric. Handbk. 60, Wash., D.C., 1954.Google Scholar
  806. Richard, M. L.: Ozone as a stimulant for fungus sporulation. Phytopathology 39, 20 (1949).Google Scholar
  807. Rippels, A., u. H. Bortels: Vorläufige Versuche über die allgemeine Bedeutung der Kohlensäure für die Pflanzenzelle. Biochem. č. 184, 237–244 (1927).Google Scholar
  808. Ritchie, D.: Salinity optima for marine fungi affected by temperature. Amer. J. Bot. 44, 870–874 (1957).Google Scholar
  809. Ritchie, D.: The effect of salinity and temperature on marine and other fungi from various climates. Bull. Torrey bot. Club 86, 367–373 (1959).Google Scholar
  810. Robinson, R.: The conditions of growth and development of Pyronema confluens Tul [pomphaloides (Bull.) Fuckel]. Ann. Botany, N.s. 40, 245–272 (1926).Google Scholar
  811. Rockwell, G. E., and J. H. Highberger: The necessity of carbon dioxide for the growth of bacteria, yeasts and moulds. J. infect. Dis. 40, 438–446 (1927).Google Scholar
  812. Rodriguez, A. G.: Influence of smoke and ethylene on the fruiting of the pineapple (Ananas sativus Shult.) J. Dept. Agric. Porto Rico 16, 5–18 (1932).Google Scholar
  813. Romell, L. G.: Mechanism of soil aeration. Ann. agron., N.s. 5, 373–384 (1935).Google Scholar
  814. Rosenfeld, W. D., and C. E. Zo Bell: Antibiotic production by marine microorganisms. J. Bact. 54, 393–398 (1947).PubMedGoogle Scholar
  815. Ross, Mary M.: Morphology and physiology of germination of Chara gymnopitys A. Braun. I. Development and morphology of the sporeling. Aust. J. Bot. 7, 1–11 (1959).Google Scholar
  816. Russell, Sir E. J.: Soil conditions and plant growth, 8th edit. London: Longmans Green & Co. 1950.Google Scholar
  817. Russell, E. J., and A. Appleyard: The atmosphere of the soil: its composition and causes of variation. J. Agr. Sci. 7, 1–48 (1915).Google Scholar
  818. Russell, M. B.: Soil aeration and plant growth. In: Soil physical conditions and plant growth, edit. B. T. Shaw, Agronomy vol. 2. New York: Academic Press 1952.Google Scholar
  819. Ryther, J. H.: The ecology of phytoplankton blooms in Moriches Bay and Great South Bay, Long Island, N.Y. Biol. Bull. 106, 198–209 (1954).Google Scholar
  820. Saunders, G. W. : Interrelations of dissolved organic matter and phytoplankton. Bot. Rev. 23, 389–409 (1957).Google Scholar
  821. Saussure, T. de: Recherches chimiques sur la végétation. Paris 1804.Google Scholar
  822. Schaible, F. : Physiologische Experimente über das Wachstum und die Keimung einiger Pflanzen unter vermindertem Luftdruck. Beitr. wiss. Bot. 4, 93–148 (1900).Google Scholar
  823. Schaumann, K. : Über die Keimungsbedingungen von Alisma Plantago und anderen Wasserpflanzen. Jb. wiss. Bot. 65, 851–934 (1926).Google Scholar
  824. Scheffer, T. C., and B. E. Livingston: Relation of oxygen pressure and temperature to growth and carbon dioxide production in the fungus Polystictus versicolor. Amer. J. Bot. 24, 109–119 (1937).Google Scholar
  825. Scholander, P. F., L. van Dam and Susan I. Scholander: Gas exchange in the roots of mangroves. Amer. J. Bot. 42, 92–98 (1955).Google Scholar
  826. Scott, A. D., and D. D. Evans: Dissolved oxygen in saturated soil. Soil Sci. Soc. Amer. Proc. 19, 7–12 (1955).Google Scholar
  827. Scott, Flora M.: Internal suberization of tissues. Bot. Gaz, 111, 378–394 (1950).Google Scholar
  828. Scott, Flora M., and Margaret Lewis: Pits, intercellular spaces and “suberization” in the apical meristems of Ricinus communis. Bot. Gaz. 114, 253–264 (1953).Google Scholar
  829. Seeley, J. G.: Some responses of greenhouse roses to various oxygen concentrations in the substratum. Ph. D. Thesis Cornell Univ. 1948. Cit. in M. B. Russell. New York 1952.Google Scholar
  830. Sethi, R. L. : Root development in rice under different conditions of growth. India Dept. Agric. Memoirs, Bot. Ser. 18, 2–57 (1930).Google Scholar
  831. Shippy, W. B. : Influence of environment and the callusing of apple cuttings and grafts. Amer. J. Bot. 17, 290–327 (1930).Google Scholar
  832. Shive, J. W.: The balance of ions and oxygen tension in nutrient substrates for plants. Soil Sci. 51, 445–457 (1941).Google Scholar
  833. Shrift, A.: Biological activities of selenium compounds. Bot. Rev. 24, 566–583 (1958).Google Scholar
  834. Shull, C. A.: The oxygen minimum and the germination of Xanthium seeds. Bot Gaz. 52, 453–477 (1911).Google Scholar
  835. Shull, C. A.: The role of oxygen in germination. Bot. Gaz. 57, 64–69 (1914).Google Scholar
  836. Shull, G. H. : The longevity of submerged seeds. Plant World 17, 329–337 (1914).Google Scholar
  837. Siegfried, M.: Über die Bindung von Kohlensäure durch amphotere Amidokörper. Hoppe-Seylers Z. physiol. Chem. 44, 85–96 (1905).Google Scholar
  838. Sifton, H. B.: Airspace tissue in plants. I. Bot. Rev. 11, 108–143 (1945).Google Scholar
  839. Sifton, H. B.: Airspace tissue in plants. II. Bot. Rev. 23, 303–312 (1957).Google Scholar
  840. Sifton, H. B.: The germination of light-sensitive seeds of Typha latifolia L. Canad. J. Bot. 37, 719–739 (1959).Google Scholar
  841. Siminoff, P., and D. Gottlieb: The production and role of antibiotics in the soil. I. The fate of streptomycin. Phytopathology 41, 420–430 (1951).Google Scholar
  842. Small, J.: pH and Plants. London: Balliere, Tyndall & Cox 1946.Google Scholar
  843. Smith, J. D.: Haemoglobin and the oxygen uptake of leguminous root nodules. Biochem. J. 44, 591–598 (1949).PubMedGoogle Scholar
  844. Smith, J. H. C. : The absorption of carbon dioxide by unilluminated leaves. Plant Physiol. 15, 183–224 (1940).PubMedGoogle Scholar
  845. Snow, L. M. : The development of root hairs. Bot. Gaz. 40, 12–48 (1905).Google Scholar
  846. Söding, H. : Die Wuchsstofflehre. Stuttgart: Georg Thieme 1952.Google Scholar
  847. Spaeth, J. N. : Dormancy in seeds of basswood, Tilia americana. Amer. J. Bot. 19, 835 (1932).Google Scholar
  848. Spencer, J. F. T.: Oxygen uptake by Rhizobia in soil. Canad. J. Bot. 32, 380–385 (1954).Google Scholar
  849. Spoehr, H. A., and J. M. McGee : Studies in plant respiration and photosynthesis. Carnegie Inst. Wash. Publ. No 325 (1923).Google Scholar
  850. Stanier, R. Y., M. Doudoroff and E. A. Adelberg : General microbiology. London: Macmillan 1958.Google Scholar
  851. Steemann-Nielsen, E.: Carbon dioxide concentration during photosynthesis and maximum quantum yield of photosynthesis. Physiol. Plantarum (Cph.) 6, 316–332 (1953).Google Scholar
  852. Steemann-Nielsen, E.: The production of antibiotics by plankton algae, and its effect upon bacterial activities in the sea. Pap. Marine Biol. Oceanogr. Deep Sea Res. Suppl. 3, 281–286 (1955).Google Scholar
  853. Steemann-Nielsen, E.: Carbon dioxide as carbon source and narcotic in photosynthesis and growth of Chlorella pyrenoidosa. Physiol. Plantarum (Cph.) 8, 317–335 (1955).Google Scholar
  854. Steinitz, Lotti M.: The effect of lack of oxygen on mitosis in barley. Amer. J. Bot. 30, 622–626 (1943).Google Scholar
  855. Stephenson, Marjorie: Bacterial metabolism, 3rd edit. London: Longmans Green & Co. 1949.Google Scholar
  856. Steward, F. G., and E. M. Shantz: The chemical induction of growth in plant tissue cultures. In Chemistry and mode of action of plant-growth substances, edit. R. L. Wain and F. Wightman. London: Butterworth & Co. 1956.Google Scholar
  857. Stiles, W.: Introduction to the principles of plant physiology, 2nd edit. London: Methuen & Co. 1950.Google Scholar
  858. Stiles, W., and I. Jorgensen: Observations on the influence of aeration of the nutrient solution in water culture experiments, with some remarks on the water culture method. New Phytologist 16, 181–197 (1917).Google Scholar
  859. Stock, T.: Untersuchungen über Keimung und Keimschlauchwachstum der Uredosporen einiger Getreideroste. Phytopath. Z. 3, 231–239 (1931).Google Scholar
  860. Stolwijk, J. A. J., and K. V. Thimann: On the uptake of carbon dioxide and bicarbonate by roots and its influence on growth. Plant Physiol. 32, 513–520 (1957).PubMedGoogle Scholar
  861. Sutter, E.: Über die Wirkung des Kohlenoxyds auf Atmung und Ionenaufnahme der Weizenwurzeln. Experientia (Basel) 6, 264–265 (1950).Google Scholar
  862. Takahashi, T. : Is germination possible in absence of air ? Bull. Coll. Agric. Imp. Univ. Tokyo 4, 439–442 (1905).Google Scholar
  863. Tamiya, H., and H. Huzisige: Effect of oxygen on the dark reaction of photosynthesis. Acta Phytochim. 15, 83–104 (1949).Google Scholar
  864. Tang, P.-S.: An experimental study of the germination of wheat seed under water, as related to temperature and aeration. Plant Physiol. 6, 203–248 (1931).PubMedGoogle Scholar
  865. Tang, P.-S.: The effects of carbon monoxide and light on the oxygen consumption and on the production of CO2 by germinating seeds of Lupinus albus. J. gen. Physiol. 15, 655–665 (1932).PubMedGoogle Scholar
  866. Tang, Y. W., and J. Bonner: The enzymatic inactivation of indoleacetic acid. I. Some characteristics of the enzyme contained in etiolated pea seedlings. Arch. Biochem. 13, 11 (1947).PubMedGoogle Scholar
  867. Taylor, D. L.: Influence of oxygen tension on respiration, fermentation and growth in wheat and rice. Amer. J. Bot. 29, 721–738 (1942).Google Scholar
  868. Taylor, S. A. : Oxygen diffusion in porous media as affected by compaction and moisture content. Soil Sci. Soc. Amer. Proc. 14, 55–61 (1949).Google Scholar
  869. Teresawa, Y.: Experimentelle Studien über Keimung der Samen von Trapa natans. Bot. Mag. (Tokyo) 41, 581–588 (1927).Google Scholar
  870. Thacker, D. G., and H. M. Good : The composition of air in trunks of sugar maple in relation to decay. Canad. J. Bot. 30, 475–485 (1952).Google Scholar
  871. Thimann, K. V.: The life of bacteria. New York: Macmillan & Co. 1955.Google Scholar
  872. Thomas, M., S. L. Ranson and J.A. Richardson: Plant physiology, 4th edit. London: J. & A. Churchill 1956.Google Scholar
  873. Thomas, M. D.: Gas damage to plants. Ann. Rev. Plant Physiol. 2, 293–322 (1951).Google Scholar
  874. Thomas, M. D., and G. R. Hill: Photosynthesis under field conditions, in Photosynthesis in plants, edit. J. Franck and W. E. Loomis: Iowa State Coll. Press 1949.Google Scholar
  875. Thornton, N. C.: Carbon dioxide storage. IV. The influence of carbon dioxide on the acidity of plant tissue. Contr. Boyce Thompson Inst. 5, 403–418 (1933).Google Scholar
  876. Thornton, N. C.: Carbon dioxide storage. V. Breaking the dormancy of potato tubers. Contr. Boyce Thompson Inst. 5, 471–481 (1933).Google Scholar
  877. Thornton, N. C.: Carbon dioxide storage. VI. Lowering the acidity of fungal hyphae by treatment with carbonic acid. Contr. Boyce Thompson Inst. 6, 395–402 (1934).Google Scholar
  878. Thornton, N. C.: The effect of reduced oxygen supply on the germination of cocklebur seed. Amer. J. Bot. 21, 710 (1934).Google Scholar
  879. Thornton, N. C.: Factors influencing germination and development of dormancy in cocklebur seeds. Contr. Boyce Thompson Inst. 7, 477–496 (1935).Google Scholar
  880. Thornton, N. C.: Carbon dioxide storage. IX. Germination of lettuce seeds at high temperatures in both light and darkness. Contr. Boyce Thompson Inst. 8, 25–40 (1936).Google Scholar
  881. Thornton, N. C.: Oxygen regulates the dormancy of the potato. Contr. Boyce Thompson Inst. 10, 339–361 (1939).Google Scholar
  882. Thornton, N. C.: Development of dormancy in lily bulbs. Contr. Boyce Thompson Inst. 10, 381–388 (1939).Google Scholar
  883. Thornton, N. C.: Carbon dioxide storage. XII. Germination of seeds in the presence of carbon dioxide. Contr. Boyce Thompson Inst. 13, 355–360 (1944 a).Google Scholar
  884. Thornton, N. C.: Dormancy, bud growth and apical dominance regulated by oxygen in freshly-harvested potato tubers. Contr. Boyce Thompson Inst. 13, 361–366 (1944b).Google Scholar
  885. Thornton, N. C.: Importance of oxygen supply in secondary dormancy and its relation to the inhibiting mechanism regulating dormancy. Contr. Boyce Thompson Inst. 13, 478–500 (1945).Google Scholar
  886. Thring, M. W.: Air pollution. London: Butterworth & Co. 1957.Google Scholar
  887. Todd, G. W. : Effect of ozone and ozonated l-hexane on respiration and photosynthesis of leaves. Plant Physiol. 33, 416–420 (1958).PubMedGoogle Scholar
  888. Todd, G. W., and M. J. Garber: Some effects of air pollutants on the growth and productivity of plants. Bot. Gaz. 120, 75–80 (1958).Google Scholar
  889. Todd, G. W., J. T. Middleton and R. E. Brewer: Effects of air pollution, Calif. Agric. 10 (7), 7–8, 14 (1956).Google Scholar
  890. Toole, E. H., S. B. Hendricks, H. A. Borthwick and V. K. Toole : Physiology of seed germination. Ann. Rev. Plant Physiol. 7, 299–324 (1956).Google Scholar
  891. Toole, V. K.: Germination of the seed of poverty grass, Danthonia spicata . J. Amer. Soc. Agron. 31, 954–965 (1939).Google Scholar
  892. Toole, V. K.: The germination of seed of Oryzopsis hymenoides. J. Amer. Soc. Agron. 32, 33–41 (1940).Google Scholar
  893. Toole, V. K.: Factors affecting the germination of various dropseed grasses (Sporobolus spp. J. Agrie. Res. 62, 691–715 (1941).Google Scholar
  894. Townsend, C. O.: The effect of hydrocyanic acid gas upon grains and other seeds. Bot. Gaz. 31, 241–246 (1901).Google Scholar
  895. Toyoda, K.: Analysis of gas contained in the fruit of Indian lotus plant. Bot. Mag (Tokyo) 71, 845–846 (1958).Google Scholar
  896. Traub, H. P., W. C. Cooper and P. C. Reece : Inducing flowering in the pineaple, Ananas sativus. Proc. Amer. Soc. horticult. Sci. 37, 521–523 (1939).Google Scholar
  897. Troll, W., and O. Dragendorff: Über die Luftwurzeln von Sonneratia L. fils und ihre biologische Bedeutung. Planta (Berl.) 13, 311–473 (1931).Google Scholar
  898. Turner, E. R., and Christine E. Quartley: Studies in the respiration and carbohydrate metabolism of plant tissues. VIII. An inhibition of respiration in peas induced by oxygen poisoning. J. exp. Bot. 7, 362–371 (1956).Google Scholar
  899. Turner, J. S., Mary Todd and E. G. Brittain: The inhibition of photosynthesis by oxygen. I. Comparative physiology of the effect. Austr. J. biol. Sci. 9, 494–510 (1956).Google Scholar
  900. Turner, J. S., J. F. Turner, K. D. Shortman and Judith E. King: The inhibition of photosynthesis by oxygen. II. The effect of oxygen on glyceraldehyde phosphate dehydrogenase from chloroplasts. Aust. J. biol. Sci. 11, 336–342 (1958).Google Scholar
  901. Tuttle, D. M., and H. W. Scherp: Studies on the carbon dioxide requirement of Neisseria meningitidis. J. Bact. 64, 171–182 (1952).PubMedGoogle Scholar
  902. Uppal, B. N.: Spore germination of Phytophthora infestans. Phytopathology 14, 32–33 (1924).Google Scholar
  903. Uppal, B. N.: Relation of oxygen to spore germination in some species of the Peronosporales. Phytopathology 16, 285–292 (1926).Google Scholar
  904. Ursprung, A.: Zur Kenntnis der Gasdiffusion in Pflanzen. Flora (Jena), N. F. 4, 129–156 (1912).Google Scholar
  905. Vallance, K. B., and D. A. Coult: Observations on the gaseous exchanges which take place between Menyanihes trifoliata L. and its environment. J. exp. Bot. 2, 212–222 (1951).Google Scholar
  906. Vareschi, V.: Die Epiphytenvegetation von Zürich. Ber. Schweiz, bot. Ges. 46, 445–488 (1936).Google Scholar
  907. Vergnano, O.: II contenuto di elementi inorganici delie piante delia formazione ofiolitica dell’mpruneta (Firenze). II. Nichelio, cromo e cobalto nel dinamismo nutritivo delie piante serpentinicole. Nuovo G. bot. ital. 65, 133–162 (1958).Google Scholar
  908. Vergnano, O.: Sul determinismo delie morfosi delia vegetazione sui terreni serpentinosi attraverso l’analisi delia nutrizione minerale. Atti Accad. Naz. Lincei, R. C. Cl., Sci.fis.-math.-nat. ital., 24, 588–597 (1958).Google Scholar
  909. Villiers, T. A., and P. F. Wareing: Interaction of growth inhibitor and a natural germination stimulator in the dormancy of Fraxinus excelsior L. Nature (Lond.) 185, 112–114 (1960).Google Scholar
  910. Virtanen, A. I., and v. Hausen: Investigations on the root nodule bacteria of leguminous plants. XVII. Continued investigation of the effect of air content of the medium on the development and function of the nodule. J. Agric. Sci. 26, 281–287 (1936).Google Scholar
  911. Vishniac, Helen S.: On the ecology of the lower marine fungi. Biol. Bull. 111, 410–414 (1956).Google Scholar
  912. Vladimirskaya, N. N. : The importance of oxygen for the germination of resting sporangia of Synchytrium endobioticum (Schildb.) Perc. Mikrobiologya 23, 72–75 (1954).Google Scholar
  913. Vlamis, J., and A. R. Davis: Germination, growth and respiration of rice and barley seedlings at low oxygen pressures. Plant Physiol. 18, 685–692 (1943).PubMedGoogle Scholar
  914. Vlamis, J., and A. R. Davis: Effect of oxygen tensions on certain physiological responses of rice, barley and tomato. Plant Physiol. 19, 33–51 (1944).PubMedGoogle Scholar
  915. Wagner, R. : Biologische Regelung und Gewebsbildung. Naturwiss. 44, 97–107 (1957).Google Scholar
  916. Waksman, S.A.: Principles of soil microbiology. Baltimore: Williams & Wilkins 1932.Google Scholar
  917. Waksman, S.A.: Humus, 2nd edit. Baltimore: Williams & Wilkins 1938.Google Scholar
  918. Waksman, S. A., M. Hotchkiss and C. L. Carey : Marine bacteria and their role in the cycle of life in the sea. Biol. Bull. 65, 137–167 (1933).Google Scholar
  919. Wangermann, Elizabeth, and H. J. Lacey: Some effects of ultraviolet radiation on Lemna minor. Nature (Lond.) 170, 126–127 (1952).Google Scholar
  920. Wardlaw, C. W., and A. Allsopp: Experimental and analytical studies of Pteridophytes. XII. The effect of different concentrations of oxygen on active and inactive meristems of ferns. Ann. Botany. N. s. 12, 157–168 (1948).Google Scholar
  921. Wareing, P. F., and H. A. Foda: The possible role of growth inhibitors in the dormancy of seed of Xanthium and lettuce. Nature (Lond.) 178, 908–911 (1956).Google Scholar
  922. Wareing, P. F., and H. A. Foda: Growth inhibitors and dormancy in Xanthium seed. Physiol. Plantarum (Cph.) 10, 266–280 (1957).Google Scholar
  923. Waris, H.: The significance for algae of chelating substances in the nutrient solution. Physiol. Plantarum (Cph.) 6, 538–543 (1953).Google Scholar
  924. Weaver, J. E., and W. J. Himmel: Relation of increased water content and decreased aeration to root development in hydrophytes. Plant Physiol. 5, 69–92 (1930).PubMedGoogle Scholar
  925. Weber, F.: Über ein neues Verfahren Pflanzen zu treiben: Acetylenmethode. S.-B. Akad. Wiss. Wien, Nat. Kl., Abt. 1 125, 189 bis 216 (1916).Google Scholar
  926. Webley, D. M.: The effect of oxygen on the growth and metabolism of the aerobic, thermophilic actinomycete, Micromonospora vulgaris. J. gen. Microbiol. 11, 114–121 (1954).PubMedGoogle Scholar
  927. Wedding, R. T., and L. C. Erickson: Changes in the permeability of plant cells to P32O4 and water as a result of exposure to ozonated hexene (smog). Amer. J. Bot. 42, 570–575 (1955).Google Scholar
  928. Wehmer, C.: Die vermeintliche Giftwirkung des Kohlenoxydes auf grüne Pflanzen. Ber. dtsch. bot. Ges. 43, 184–188 (1925).Google Scholar
  929. Welch, P. S.: Limnology, 1st edit. New York: McGraw-Hill Book Comp. 1935.Google Scholar
  930. Went, F. W.: Air pollution. Sci. Amer. 192, 63–72 (1955).Google Scholar
  931. Went, F. W.: The experimental control of plant growth. Waltham. Mass.: Chronica Botanica 1957.Google Scholar
  932. Whitaker, D. M. : Physical factors of growth. Growth, Suppl. No 2, 75–90 (1940).Google Scholar
  933. White, Irene G.: Toxin production by the oak wilt fungus, Endoconiophora fagacearum. Amer. J. Bot. 42, 759–764 (1955).Google Scholar
  934. White, J., and D. J. Munns: The effect of aeration and other factors on yeast growth and fermentation. Waller-stein Lab. Comm. 14, 199–218 (1951).Google Scholar
  935. White, P. R.: Controlled differentation in a plant tissue culture. Bull. Torrey bot. Club 66, 507–513 (1939).Google Scholar
  936. Wieler, A.: Die Beeinflussung des Wachsens durch verminderte Partiärpressung des Sauerstoffes. Unters. bot. Inst. Tübingen 1, 1–46 (1883).Google Scholar
  937. Wilks, S. S.: Carbon monoxide in green plants. Science 129, 964–966 (1959).PubMedGoogle Scholar
  938. Williams, O. B.: Symposium on the biology of bacterial spores. Bact. Rev. 16, 89–143 (1952).PubMedGoogle Scholar
  939. Williams, W. T., J. Dore and D. G. Patterson: Studies in the regeneration of horseradish. III. External factors. Ann. Botany, N. s. 21, 627–632 (1957).Google Scholar
  940. Wood, E. J. F.: Reducing substances in Zostera. Nature (Lond.) 172, 916 (1953).Google Scholar
  941. Wood, E. J. F.: Diatoms in the ocean deeps. Pacific Sci. 10, 377–381 (1956).Google Scholar
  942. Wood, E. J. F.: The significance of marine microbiology: Bact. Rev. 22, 1–19 (1958).Google Scholar
  943. Wood, W.M. L.: Thermonasty in Tulip and Crocus flowers. J. exp. Bot. 4, 65–77 (1953).Google Scholar
  944. Woodford, E. K., and F. G. Gregory: Preliminary results obtained with an apparatus for study of salt uptake and root respiration of whole plants. Ann. Botany, K s. 12, 335–370 (1948).Google Scholar
  945. Woods, D. D., and June Lascelles: Autrophic and heterotrophic ways of life, in Autotrophic microorganisms, 4th Symp. Soc. Gen. Microbiol., Cambridge 1954.Google Scholar
  946. Yamada, N.: Auxin relationships of the rice coleoptile. Plant Physiol. 29, 92–96 (1954).PubMedGoogle Scholar
  947. Yarwood, C. E., and J. T. Middleton : Smog injury and rust infection. Plant Physiol. 29, 393–395 (1954).PubMedGoogle Scholar
  948. Zimmerman, P. W. : Anaesthetic properties of carbon monoxide and other gases in relation to plants, insects and centipedes. Contr. Boye Thompson Inst. 7, 147–155 (1935).Google Scholar
  949. Zimmerman, P. W.: Effects on plants of impurities associated with air pollution. Proc. U. S. Tech. Conf. on Air Pollution, Chapt. 13, edit. L. C. McCabe. New York: McGraw-Hill Book Comp. 1952.Google Scholar
  950. Zimmerman, P. W., and R. O. Berg: Effects of chlorinated water on land plants, aquatic plants and gold-fish. Contr. Boy ce Thompson Inst. 6, 39–49 (1934).Google Scholar
  951. Zimmerman, P. W., W. Crocker and A.E. Hitchcock: Initiation and stimulation of roots from exposure of plants to carbon monoxide gas. Contr. Boyce Thompson Inst. 5, 1–17 (1933 a).Google Scholar
  952. Zimmerman, P. W., W. Crocker and A.E. Hitchcock: The effect of carbon monoxide on plants. Contr. Boyce Thompson Inst. 5, 195–211 (1933b).Google Scholar
  953. Zimmerman, P. W., and A.E. Hitchcock: Initiation and stimulation of adventitous roots caused by unsaturated hydrocarbon gases. Contr. Boyce Thompson Inst. 5, 351–369 (1933).Google Scholar
  954. Zimmerman, P. W., W. Crocker and A.E. Hitchcock: Adventitious shoots and roots induced by natural influences and synthetic growth substances. Contrib. Boyce Thompson Inst. 11, 127–159 (1940).Google Scholar
  955. ZoBell, C. E. : Marine microbiology. Waltham, Mass. : Chronica Botanica 1946.Google Scholar
  956. Zobl, K. H. : Untersuchungen über die Widerstandsfähigkeit von Püzsporen gegen feuchte und trockene Hitze. Arch. Mikrobiol. 13, 191–206 (1944).Google Scholar
  957. Zohary, M.: Die verbreitungsökologischen Verhältnisse der Pflanzen Palästinas. I. Die antitelechorischen Erscheinungen. Beih. bot. Zbl. 56, 1–155 (1937).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1961

Authors and Affiliations

  • Michael Evenari
  • D. J. Carr

There are no affiliations available

Personalised recommendations