Sunscreens: The Molecules and Their Photochemistry

  • Bice S. Martincigh
  • John M. Allen
  • Sandra K. Allen
Part of the Biotechnology Intelligence Unit book series (BIOIU)


The alarming worldwide increase in skin cancer is a major cause of concern and the center of much research. In the USA alone one million new cases of skin cancer are reported each year, of which 10,000 cases ultimately lead to death.1 In countries like Australia and South Africa where the climate encourages the pursuit of outdoor activities, the incidence of skin cancer in the fair-skinned population is amongst the highest in the world.


Solar Ultraviolet Radiation Physical Blocker Thymine Dime Singlet Molecular Oxygen Methyl Anthranilate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Strange CJ. Thwarting skin cancer with sun sense. FDA Consumer 1995; 29:10–14.Google Scholar
  2. 2.
    De Gruijl FR, Van der Leun JC. Estimate of the wavelength dependency of ultraviolet carcinogenesis in humans and its relevance to the risk assessment of a stratospheric ozone depletion. Health Physics 1994; 67(4):319–325.PubMedCrossRefGoogle Scholar
  3. 3.
    Sayre RM. Sunlight risk and how sunscreens work. Cosmetics and Toiletries 1992; 107:105–109.Google Scholar
  4. 4.
    Urbach F. Potential effects of altered solar ultraviolet radiation on human skin cancer. Photochem Photobiol 1989; 49:507–513.CrossRefGoogle Scholar
  5. 5.
    Brown MW, Galley E. Testing UVA and UVB protection from microfine titanium dioxide. Cosmetics and Toiletries 1990; 105:69–73.Google Scholar
  6. 6.
    Drobetsky EA, Turcotte J, Châteauneuf A. A role for ultraviolet A in solar mutagenesis. Proc Natl Acad Sci USA 1995; 92:2350–2354.PubMedCrossRefGoogle Scholar
  7. 7.
    Peak JG, Peak MJ. Comparison of initial yields of DNA-to-protein crosslinks and single-strand breaks induced in cultured human cells by far- and near-ultraviolet light, blue light and x-rays. Mutation Research 1991; 246(1):187–191.PubMedCrossRefGoogle Scholar
  8. 8.
    Klein K. Encyclopedia of UV absorbers for sunscreen products. Cosmetics and Toiletries 1992; 107:45–65.Google Scholar
  9. 9.
    Janousek A. Sunscreens—regulatory situation worldwide. Seifen-Öle-Fette-Wachse 1991; 117(10):392–396.Google Scholar
  10. 10.
    Lowe NJ, Shaath NA. Sunscreens: Development, Evaluation and Regulatory Aspects. Cosmetic Science and Technology Series, Volume 10. New York: Marcel Dekker, 1990; 370.Google Scholar
  11. 11.
    Roberfroid M, Buc Calderon P. Free Radicals and Oxidation Phenomena in Biological Systems. New York: Marcel Dekker, 1995:65–66.Google Scholar
  12. 12.
    Mitchnick MA. Zinc oxide, an old friend to the rescue. Cosmetics and Toiletries 1992; 107:111–116.Google Scholar
  13. 13.
    Judin VPS. The lighter side of TiO2. Chemistry in Britain 1993; 29:503–505.Google Scholar
  14. 14.
    Rudham R. Physical sunscreen materials. Presentation at the FDA Workshop on the Photochemistry and Photobiology of Sunscreens, Rockville, Maryland, USA, 19–20 September 1996.Google Scholar
  15. 15.
    Chignell CF, Kalyanaraman B, Mason RP et al. Spectroscopic studies of cutaneous photosensitizing agents-I. Spin trapping of photolysis products from sulfanilamide, 4-aminobenzoic acid and related compounds. Photochem Photobiol 1980; 32:563–571.CrossRefGoogle Scholar
  16. 16.
    Morliere P, Avice O, Melo TSE et al. A study of the photochemical properties of some cinnamate sunscreens by steady state and laser flash photolysis. Photochem Photobiol 1982; 36:395–399.PubMedCrossRefGoogle Scholar
  17. 17.
    Allen JM, Gossett CJ, Allen SK. Photochemical formation of singlet molecular oxygen in illuminated solutions of several commercially available sunscreen active ingredients. Chem Res Toxicol 1996; 9(3):605–609.PubMedCrossRefGoogle Scholar
  18. 18.
    Halliwell B, Gutteridge JMC. Free Radicals in Biology and Medicine. 2nd ed. Oxford: Clarendon Press, 1995:1–20.Google Scholar
  19. 19.
    Ingold KU. Peroxy radicals. Accts Chem Res 1969; 2:1–9.CrossRefGoogle Scholar
  20. 20.
    Sawyer DT. Oxygen Chemistry. New York: Oxford University Press, 1991:120–160.Google Scholar
  21. 21.
    Faust BC. Generation and use of simulated sunlight in photochemical studies of liquid solutions. Rev Sci Instrum 1993; 64:577–578.CrossRefGoogle Scholar
  22. 22.
    Gasparro FP. UV-induced photoproducts of para-aminobenzoic acid. Photodermatol 1985; 2:151–157.PubMedGoogle Scholar
  23. 23.
    Shaw AA, Wainschel LA, Shetlar MD. The photochemistry of p-ami-nobenzoic acid. Photochem Photobiol 1992; 55(5):647–656.PubMedCrossRefGoogle Scholar
  24. 24.
    Röscher NM, Lindemann MKO, Kong SB et al. Photodecomposition of several compounds commonly used as sunscreen agents. Photo-chem Photobiol 1994; 80:417–421.CrossRefGoogle Scholar
  25. 25.
    Knowland J, McKenzie EA, McHugh PJ et al. Sunlight-induced mutagenicity of a common sunscreen ingredient. FEBS Letts 1993; 324(3):309–313.CrossRefGoogle Scholar
  26. 26.
    Schallreuter KU, Wood JM, Farwell DW et al. Oxybenzone oxidation following solar irradiation of skin: photoprotection versus antioxidant inactivation. J Invest Dermatol 1996; 106:583–586.PubMedCrossRefGoogle Scholar
  27. 27.
    Gasparro FP, Battista J. Characterization of para-aminobenzoic acid-DNA-photoadducts. Photochem Photobiol 1987; 45:49s.Google Scholar
  28. 28.
    Shaw AA, Wainschel, Shetlar MD. Photoaddition of p-aminobenzoic acid to thymine and thymidine. Photochem Photobiol 1992; 55(5):657–663.PubMedCrossRefGoogle Scholar
  29. 29.
    Broadbent JK, Martincigh, BS, Raynor MW et al. Capillary supercritical fluid chromatography combined with atmospheric pressure chemical ionization mass spectrometry for the investigation of pho-toproduct formation in the sunscreen absorber 2-ethylhexyl-p-methoxycinnamate. Journal of Chromatography A 1996; 732:101–110.CrossRefGoogle Scholar
  30. 30.
    Mohammad T, Baird WM, Morrison H. Photochemical covalent binding of p-methoxycinnamic acid to calf thymus DNA. Bioorganic Chem 1991; 19:88–100.CrossRefGoogle Scholar
  31. 31.
    Gonzenbach H, Klecak G, Schwarzenbach R. Presentation at the SCS/ SFC Symposium, Stratford-upon-Avon, 16–18 April 1986.Google Scholar
  32. 32.
    Schwarzenbach R, Gonzenbach H, Klecak G. New approach for testing UV-filters. Preprints of the XIVth IFSCC Congress, Barcelona, 16–19 September 1986, Vol II 1986; 845–854.Google Scholar
  33. 33.
    Selles E, Aberturas MR, Fresno MJ. Photostability of 2-ethylhexyl p-methoxycinnamate in sunscreens. An R Acad Farm 1987; 53(1):153–158.Google Scholar
  34. 34.
    Kammeyer A, Westerhof W, Bolhuis PA et al. The spectral stability of several sunscreening agents on stratum corneum sheets. Cos Sei 1987; 9(3):125–136.Google Scholar
  35. 35.
    Deflandre A, Lang G. Photoisomerization of benzylidene camphor and derivatives. Cosmetics and Toiletries 1988; 103(11):69–75.Google Scholar
  36. 36.
    Deflandre A, Lang G. Photostability assessment of sunscreens. Benzylidene camphor and dibenzoylmethane derivatives. Cos Sci 1988; 10(2):53–62.CrossRefGoogle Scholar
  37. 37.
    Shaath NA, Fares HM, Klein K. Photodegradation of sunscreen chemicals: Solvent considerations. Cosmetics and Toiletries 1990; 105(12):41–44.Google Scholar
  38. 38.
    Turro NJ. Modern Molecular Photochemistry. Menlo Park: Benjamin/ Cummings, 1978:583–593.Google Scholar
  39. 39.
    Gonzenbach H, Hill TJ, Truscott TG. The triplet energy levels of UVA and UVB sunscreens. Photochem Photobiol 1992; 16:377–379.CrossRefGoogle Scholar
  40. 40.
    Halpern AM, Ramachandran BR. The photophysics of p-aminobenzoic acid. Photochem Photobiol 1995; 62(4):686–691.CrossRefGoogle Scholar
  41. 41.
    Allen JM, Gossett CJ, Allen SK. Photochemical formation of singlet molecular oxygen 1O2 in illuminated aqueous solutions of p-ami-nobenzoic acid (PABA). Photochem Photobiol 1996; 32:33–37.CrossRefGoogle Scholar
  42. 42.
    Charlier M, Hélène C. Photochemical reactions of aromatic ketones with nucleic acids and their components. I. Purine and pyrimidine bases and nucleosides. Photochem Photobiol 1972; 15(1)71–87.PubMedCrossRefGoogle Scholar
  43. 43.
    Rutherford CE, Salter LF, Thomas RC. pH Effects on p-aminoben-zoic acid photosensitized dimer formation from the free thymine base. Photochem Photobiol 1990; 52:337–343.CrossRefGoogle Scholar
  44. 44.
    Bolton K, Martincigh BS, Salter LF. The potential carcinogenic effect of Uvinul DS49—a common UV absorber used in cosmetics. Photochem Photobiology, A: Chemistry 1992; 63:241–248.Google Scholar
  45. 45.
    Aliwell SR, Martincigh BS, Salter LF. Para-aminobenzoic acid-photosensitized dimerization of thymine I. In DNA-related model systems. Photochem Photobiol, A: Chemistry 1993; 71:137–146.Google Scholar
  46. 46.
    Aliwell SR, Martincigh BS, Salter LF. Para-aminobenzoic acid-photosensitized dimerization of thymine II. In pUC19 plasmid DNA. Photochem Photobiol, A: Chemistry 1993; 71:147–153.Google Scholar
  47. 47.
    Sutherland BM. p-Aminobenzoic acid—sunlamp sensitization of pyrimidine dimer formation and transformation in human cells. Photochem Photobiol 1982; 36:95–97.PubMedCrossRefGoogle Scholar
  48. 48.
    Aliwell SR, Martincigh BS, Salter LF. Photoproducts formed by near-UV irradiation of thymine in the presence of p-aminobenzoic acid. Photochem Photobiol, A: Chemistry 1994; 83:223–228.Google Scholar
  49. 49.
    Aliwell SR. Para-aminobenzoic acid photosensitized dimerization of thymine. MSc thesis, University of Natal, Durban, South Africa 1991.Google Scholar
  50. 50.
    Bolton K. Studies of the photochemical reactions of thymine with selected sensitizers. MSc thesis, University of Natal, Durban, South Africa 1991.Google Scholar
  51. 51.
    Hoffmann MR, Martin ST, Choi W et al. Environmental applications of semiconductor photocatalysis. Chem Rev 1995; 95:69–96.CrossRefGoogle Scholar
  52. 52.
    Cai R, Hashimoto K, Itoh K et al. Photokilling of malignant cells with ultrafine TiO2 powder. Bull Chem Soc Jpn 1991; 64(4):1268–1273.CrossRefGoogle Scholar
  53. 53.
    Cai R, Kubota Y, Shuin T et al. Induction of cytotoxicity by photoexcited TiO2 particles. Cancer Res 1992; 52:2346–2348.PubMedGoogle Scholar
  54. 54.
    Anderson RR. Optics of the skin. In: Lim HW, Soter NA, eds. Clinical Photomedicine. New York: Marcel Dekker, 1993:19–31.Google Scholar
  55. 55.
    Bodannes RS, Chan PC. Singlet oxygen reacts with inhibitors of ultraviolet mediated damage to skin: p-aminobenzoic acid and its derivatives. Biochem Biophys Res Commun 1979; 87(4):1116–1123.CrossRefGoogle Scholar
  56. 56.
    Allen JM, Egenolf S, Allen SK. Rapid reaction of singlet molecular oxygen (1O2) with p-aminobenzoic acid (PABA) in aqueous solution. Biochem Biophys Res Commun 1995; 212(3):1145–1151.PubMedCrossRefGoogle Scholar
  57. 57.
    Hue ML, Chen YK, Chen LC et al. Para-aminobenzoic acid scavenges reactive oxygen species and protects DNA against UV and free radical damage. Nutrit Biochem 1995; 6:504–508.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Bice S. Martincigh
  • John M. Allen
  • Sandra K. Allen

There are no affiliations available

Personalised recommendations