A Declarative Framework for Reasoning on Spatio-Temporal Data

  • Mirco Nanni
  • Alessandra Raffaetà
  • Chiara Renso
  • Franco Turini


New technologies in the field of mobile computing and communication can provide a wealth of spatio-temporal information. Collected data are useful as far as they can be used to analyse phenomena and to take informed decisions. The first step for allowing one to make a profitable use of data is to provide a query language for them, and we believe that the query language, even more in the case of spatio-temporal data, must be able to handle not only data but also rules, and exhibit both deductive and inductive capabilities. Rules can be used to represent general knowledge about the collected data, and deductive capabilities can provide answers to queries that require some inference besides the crude manipulation of the data. Induction can help extracting implicit knowledge from data and, according to the impressive success in the knowledge discovery in database field, is a powerful support to decision making.


Query Language Spatial Object Temporal Annotation Knowledge Representation Language Constraint Logic Program 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abdelmoty A.I., Paton N.W., Williams M.H., Fernandes A.A.A., Barja M.L., Dinn A. (1994) Geographic Data Handling in a Deductive Object-Oriented Database. In: Proc. of the DEXA Conference, LNCS 856, Springer, pp. 445–454.Google Scholar
  2. 2.
    Abraham T. (1999) Knowledge Discovery in Spatio-Temporal Databases. PhD thesis, School of Computer and Information Science, Faculty of Information Technology, University of South Australia.Google Scholar
  3. 3.
    Abraham T., Roddick J.F. (1999) Survey of Spatio-Temporal Databases. Geolnformatica 3(1):61–99.CrossRefGoogle Scholar
  4. 4.
    Ceccarelli T., Centeno D., Giannotti F., Massolo A., Parent C., Raffaetà A., Renso C., Spaccapietra S., Turini F. (2001) The behaviour of the Crested Porcupine: the complete case study. Technical report, DeduGIS — EU WG.Google Scholar
  5. 5.
    Chomicki J., Liu Y., Revesz P.Z. (1999) Animating Spatiotemporal Constraint Databases. In: Spatio-Temporal Database Management, LNCS 1678, Springer, pp. 224–241.CrossRefGoogle Scholar
  6. 6.
    Chomicki J., Revesz P.Z. (1999) Constraint-Based Interoperability of Spatiotemporal Databases. Geolnformatica 3(3):211–243.CrossRefGoogle Scholar
  7. 7.
    Erwig M., Güting R.H., Schneider M., Vazirgiannis M. (1999) Spatio-Temporal Data Types: An Approach to Modeling and Querying Moving Objects in Databases. Geolnformatica 3(3):269–296.CrossRefGoogle Scholar
  8. 8.
    ESRI. Spatial Analyst.
  9. 9.
    Faloutsos C., Lin K.-I. (1995) Fastmap: a fast algorithm for indexing of traditional and multimedia databases. In: Proc. of SIGMOD Conference, ACM, pp. 163–174.Google Scholar
  10. 10.
    Frühwirth T. (1996) Temporal Annotated Constraint Logic Programming. Journal of Symbolic Computation 22:555–583.CrossRefGoogle Scholar
  11. 11.
    Gaffney S., Smyth P. (1999) Trajectory clustering with mixture of regression models. In: Proc. of the KDD Conference, ACM, pp. 63–72.Google Scholar
  12. 12.
    Grumbach S., Rigaux P., Segoufin L. (1998) The DEDALE System for Complex Spatial Queries. In: Proc. of the SIGMOD Conference, ACM, pp. 213–224.Google Scholar
  13. 13.
    Grumbach S., Rigaux P., Segoufin L. (2001) Spatio-Temporal Data Handling with Constraints. Geolnformatica 5(1):95–115.CrossRefGoogle Scholar
  14. 14.
    Güting R.M., Böhlen M.H., Erwig M., Jensen C.S., Lorentzos N., Schneider M., Vazirgiannis M. (2000) A Foundation for Representing and Querying Moving Objects. TODS 25(1):1–42.CrossRefGoogle Scholar
  15. 15.
    Hooge P.N., Eichenlaub W.M., Solomon E.K. (1997) Animal Movement Extension to ArcView. Ver. 2.0., 1997. Alaska Biological Science Center, U.S. Geological Survey, Anchorage, AK, USA.Google Scholar
  16. 16.
    Kanellakis P.C., Kuper G.M., Revesz P.Z. (1995) Constraint query languages. Journal of Computer and System Sciences 51(1):26–52.CrossRefGoogle Scholar
  17. 17.
    Ketterlin A. (1997) Clustering sequences of complex objects. In: Proc. of the KDD Conference, ACM, pp. 215–218.Google Scholar
  18. 18.
    Mancarella P., Raffaetà A., Renso C., Turini F. Integrating Knowledge Representation and Reasoning in Geographical Information Systems. International Journal of GIS. To appear.Google Scholar
  19. 19.
    Nanni M. (2002) Clustering Methods for Spatio-Temporal Data. PhD thesis, Dipartimento di Informatica, Università di Pisa.Google Scholar
  20. 20.
    Raffaetà A., Frühwirth T. (2001) Spatio-Temporal Annotated Constraint Logic Programming. In: Proc. of PADL’01, LNCS 1990, Springer, pp. 259–273.Google Scholar
  21. 21.
    Raffaetà A., Renso C., Turini F. (2002) Enhancing GISs for Spatio-Temporal Reasoning. In: Proc. of GIS’02, ACM, pp. 35–41.Google Scholar
  22. 22.
    Raffaetà A., Renso C., Turini F. (2003) Qualitative Spatial Reasoning in a Logical Framework. In: Proc. of the AIIA Conference, LNAI 2829, Springer, pp. 78–90.Google Scholar
  23. 23.
    Spaccapietra S. (Ed.) (1999) Spatio-Temporal Data Models & Languages (DEXA Workshop). IEEE Computer Society Press.Google Scholar
  24. 24.
    Worboys M.F. (1994) A unified model for spatial and temporal information. The Computer Journal 37(1):26–34.CrossRefGoogle Scholar
  25. 25.
    Worboys M.F. (1995) GIS — A Computing Perspective. Taylor &; Francis.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Mirco Nanni
    • 1
  • Alessandra Raffaetà
    • 2
  • Chiara Renso
    • 1
  • Franco Turini
    • 3
  1. 1.ISTI CNRPisaItaly
  2. 2.Dipartimento di InformaticaUniversità Ca’ Foscari VeneziaItaly
  3. 3.Dipartimento di InformaticaUniversità di PisaItaly

Personalised recommendations