Skip to main content

Roles of Purines in Nociception and Pain

  • Chapter
Purinergic and Pyrimidinergic Signalling I

Part of the book series: Purinergic and Pyrimidinergic Signalling ((HEP,volume 151 / 1))

Abstract

Transmission of somatosensory information is normally initiated in the periphery through stimulation of the endings of primary afferent neurons which encode information as an action potential discharge that is propagated into the central nervous system (CNS). Whether this information is ultimately perceived as noxious or innocuous depends, in part, on the activation of specific peripheral sensory afferents and, as importantly, on the actions and interactions of numerous neurotransmitter/neuromodulator systems at peripheral and central sites. The first level of central processing for most somatosensory information is in the dorsal horn of the spinal cord or in the homologous region of the trigeminal nucleus. Multiple lines of evidence support roles for adenosine and adenosine 5′-triphosphate (ATP) in the transmission of sensory information in the periphery and in the dorsal horn (Burnstock and Wood 1996; Salter et al. 1993; Sawynok 1998). In this chapter we review evidence that adenosine and ATP participate in sensory transmission, highlighting recent developments in our understanding of purine nucleotides and nucleosides in nociceptive, e.g., pain-related, and non-nociceptive sensory transmission at peripheral and spinal sites. Finally, we discuss results of humans studies which to date have focussed mainly on the use of adenosine as a novel therapeutic agent for the treatment of clinical pain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Aley KO, Green PG, Levine JD (1995). Opioid and adenosine peripheral antinociception are subject to tolerance and withdrawal. J Neurosci 15: 8031–8038

    PubMed  CAS  Google Scholar 

  • Aley KO, Levine JD (1997) Multiple receptors involved in peripheral alpha 2, mu, and Al antinociception, tolerance, and withdrawal. J Neurosci 17: 735–744

    PubMed  CAS  Google Scholar 

  • Arnér S, Arnér B (1985) Differential effects of epidural morphine in the treatment of cancer-related pain. Acta Anaesthesiol Scand 29: 32–36

    Article  PubMed  Google Scholar 

  • Bardoni R, Goldstein PA, Lee CJ, Gu JG, MacDermott AB (1997) ATP P2X receptors mediate fast synaptic transmission in the dorsal horn of the rat spinal cord. J Neurosci 17: 5297–5304.

    PubMed  CAS  Google Scholar 

  • Bean BP (1990) ATP-activated channels in rat and bullfrog sensory neurones. Concentration dependence and kinetics. J Neurosci 10: 1–10

    PubMed  CAS  Google Scholar 

  • Belfrage M, Sollevi A, Segerdahl M, Sjölund K-F, Hansson P (1995) Systemic adenosine infusion alleviates spontaneous and stimulus evoked pain in patients with peripheral neuropathic pain. Anesth Analg 81: 713–717

    PubMed  CAS  Google Scholar 

  • Belfrage M, Segerdahl M, Arnér S, Sollevi A (1999) Safety and efficacy of intrathecal adenosine in patients with chronic neuropathie pain. Anesth Analg 89: 136–142

    PubMed  CAS  Google Scholar 

  • Biaggioni I, Olafsson B, Robertson RM, Hollister AS, Robertson D (1987) Cardiovascular and respiratory effects of adenosine in conscious man. Evidence for carotid body chemoreceptor activation. Cire Res 61: 779–786

    Google Scholar 

  • Bleehen T, Keele CA (1977) Observations on the algogenic actions of adenosine compounds on the human blister base preparation. Pain 3: 367–377

    Article  PubMed  CAS  Google Scholar 

  • Burnstock G (1978) A basis for distinguishing two types of purinergic receptor. In: Straub RW and Bolis L eds) Cell membrane receptors for drugs and hormones: A multidisciplinary approach. New York, Rave Press, pp 107–118

    Google Scholar 

  • Burnstock G (1996) A unifying purinergic hypothesis for the initiation of pain. Lancet 347: 1604–1105

    Article  PubMed  CAS  Google Scholar 

  • Burnstock G, Wood JN (1996) Purinergic receptors: their role in nociception and primary afferent neurotransmission. Curr Opin Neurobiol 6: 526–532

    Article  PubMed  CAS  Google Scholar 

  • Cahill CM, White TD, Sawynok J (1993) Morphine activates T-conotoxin-sensitive Ca’ channels to release adenosine from spinal cord synaptosomes. J Neurochem 60: 894–901

    Article  PubMed  CAS  Google Scholar 

  • Cahill CM, White TD, Sawynok J (1995) Spinal opioid receptors and adenosine release: Neurochemical and behavioural characterization of opioid subtypes. J Pharmacol Exp Therap 275: 84–93

    Google Scholar 

  • Chen C-C, Akoplan AN, Sivilotti L, Colquhoun D, Burnstock G, Wood JN (1995) A P2X purinoceptor expressed by a subset of sensory neurons. Nature 377: 428431

    Google Scholar 

  • Choca JI, Green RD, Proudfit HK (1988) Adenosine Al and A2 receptors of the substantia gelatinosa are located predominantly on intrinsic neurones: An audoradiographic study. J Pharmacol Exp Therap 247: 757–764

    Google Scholar 

  • Choca JI, Proudfit HK, Green RD (1987) Identification of Al and A2 adenosine receptors in the rat spinal cord. J Pharmacol Exp Therap 242: 905–910

    CAS  Google Scholar 

  • Collier HOJ, James GWL, Schneider C (1966) Antagonism by aspirin and femanates of bronchoconstriction and nociception by adenosine-5’-triphosphate. Nature 212: 411–412

    Article  PubMed  CAS  Google Scholar 

  • Collo G, North RA, Kawashima E, Merlo-Pich E, Neidhart S, Surprenant A, Buell G (1996) Cloning of P2X5 and P2X6 receptors and the distribution and properties of an extended family of ATP-gated ion channels. J Neurosci 16: 2495–2507

    PubMed  CAS  Google Scholar 

  • Cook SP, Vulchanova L, Hargreaves KM, Elde R, McCleskey EW (1997) Distinct ATP receptors on pain-sensing and stretch-sensing neurons. Nature 387: 505–508

    Article  PubMed  CAS  Google Scholar 

  • Crews JC, Cahall M, Bebhani MM (1994) The neurophysiologie mechanisms of tourniquet pain. Anesthesiology 81: 730–736

    Article  PubMed  CAS  Google Scholar 

  • Cronstein BN (1994) Adenosine, an endogenous anti-inflammatory agent. J Appl Physiol 76 (1): 5–13

    PubMed  CAS  Google Scholar 

  • Cronstein BN (1995) A novel approach to the development of anti-inflammatory agents: Adenosine release at inflamed sites. J Investigative Med 43: 50–57

    CAS  Google Scholar 

  • Cronstein BN, Naime D, Firestein GS (1995) The antiinflammatory effects of an adenosine kinase inhibitor are mediated by adenosine. Arthritis Rheum 38: 1040–1045

    Article  PubMed  CAS  Google Scholar 

  • Cronstein BN, Montesinos, MC, Weissman G (1999) Salicylates and sulfasalazine, but not glucocorticoids, inhibit leukocyte accumulation by an adenosine-dependent mechanism that is independent of prostaglandin synthesis and p105 of NFkB. Proc. Natl Acad Sci USA 96: 6377–6381

    Google Scholar 

  • Cui J-G, Meyersson B, Sollevi A, Linderoth B (1998) Effect of spinal cord stimulation on tactile hypersensitivity in mononeuropathic rats is potentiated by simultaneous GABAB and adenosine receptor activation. Neurosci Lett 247: 183–186.

    Article  PubMed  CAS  Google Scholar 

  • Dale HH (1935) Pharmacology and nerve-endings. Proc Roy Soc Med 28: 319–322

    PubMed  CAS  Google Scholar 

  • DeKoninck Y, Henry JL (1992) Peripheral vibration causes an adenosine-mediated postsynaptic inhibitory potential in dorsal horn neurones in the cat spinal cord. Neurosci 50: 435–443

    Article  CAS  Google Scholar 

  • De Koninck Y, Henry JL (1994) Prolonged GABAA-mediated inhibition following single hair afferent input to single spinal dorsal horn neurones in cats. J Physiol (Lond) 476: 89–100

    Google Scholar 

  • DeLander GE, Keil II GJ (1994) Antinociception induced by intrathecal coadministration of selective adenosine receptor and selective opioid receptor agonists in mice. J Pharmacol Exp Therap 268: 943–951

    CAS  Google Scholar 

  • DeLander GE, Mossberg HI, Porreca F (1992) Involvement of adenosine in antinociception produced by spinal or supraspinal receptor-selective opioid agonists: Dissociation from gastrointestinal effects in mice. J Pharmacol Exp Therap 263: 1097–1104

    Google Scholar 

  • DeLander GE, Hopkins CJ (1986) Spinal adenosine modulates descending antinoci- ceptive pathways stimulated by morphine. J Pharmacol Exp Ther 239: 88–93

    PubMed  CAS  Google Scholar 

  • Dickenson AH, Chapman V, Green GM (1997) The pharmacology of excitatory and inhibitory amino acid—mediated events in the transmission and modulation of pain in the spinal cord. Gen Pharmacol 28: 633–638

    Article  PubMed  CAS  Google Scholar 

  • Doak GJ, Sawynok J (1995) Complex role of peripheral adenosine in the genesis of the response to subcutaneous formalin in the rat. Eur J Pharmacol 281: 311–318

    Article  PubMed  CAS  Google Scholar 

  • Dolphin AC, Forda SR, Scott RH (1986) Calcium-dependent currents in cultured rat dorsal root ganglion neurones are inhibited by an adenosine analog. J Physiol (London) 373: 47–61

    CAS  Google Scholar 

  • Dray A (1995) Inflammatory mediators of pain. Br J Anaesth; 75: 125–131

    Article  PubMed  CAS  Google Scholar 

  • Driessen B, Reimann W, Selve N, Friderichs E, Bultmann R (1994) Antinociceptive effect of intrathecally administered P2—purinoceptor antagonists in rats. Brain Res 666: 182–188

    Article  PubMed  CAS  Google Scholar 

  • Dubyak, GR, Cowen DS, Lazarus HM (1988) Activation of the inositol phospholipid signaling system by receptors for extracellular ATP in human neutrophils, monocytes and neutrophil/monocyte progenitor cells. Ann NY Acad Sci 551: 218–237

    Article  PubMed  CAS  Google Scholar 

  • Dubyak GR, El-Moatassim C (1993) Signal transduction via P2-purinergic receptors for extracellular ATP and other nucleotides. Am J Physiol 265 (Cell Physiol 43). C577–606

    PubMed  CAS  Google Scholar 

  • Edwards, FA, Gibb AJ, Colquhoun D (1992) ATP receptor-mediated synaptic current in the central nervous system. Nature 359: 144–146

    Article  PubMed  CAS  Google Scholar 

  • Eisenberger MA, Reyno LM, Jodrell DI, Sinibaldi VJ, Tkaczuk KH, Sridhara R, Zuhowski EG, Lowitt MH, Jacobs SC, Egorin MJ J (1993) Suramin, an active drug for prostate cancer: interim observations in a phase I trial. Natl Cancer Inst Apr 85: 611–621

    Article  CAS  Google Scholar 

  • Ekblom A, Segerdahl M, Sollevi A (1995) Adenosine but not ketamine or morphine increases the cutaneous heat pain threshold in healthy volunteers. Acta Anaesthesiol Scand 39: 717–722

    Article  PubMed  CAS  Google Scholar 

  • Evans RJ, Derkach V, Surprenant A (1992) ATP mediates fast synaptic transmission in mammalian neurons. Nature 357: 503–505

    Article  PubMed  CAS  Google Scholar 

  • Fargeas MJ, Fioramonti J, Bueno L (1990) Central and peripheral actions of adenosine and its analogues on intestinal myoelectric activity and propulsion in rats. J Gastroint Motility 2: 121–127

    Article  Google Scholar 

  • Firestein GS, Boyle D, Bullough DA, Gruber HE, Sajjadi FG, Montag A, Sambol B, Mullare KM (1994) Protective effect of an adenosine kinase inhibitor in septic shock. J Immunol 152: 5853–5859

    PubMed  CAS  Google Scholar 

  • Forsberg C, Sollevi A, Thörn SE, Segerdahl M (1998) Effects of adenosine infusion on gastric emptying in healthy volunteers. Acta Anaesthesiol Scand 43: 87–90

    Article  Google Scholar 

  • Fredholm BB (1980) Are methylxanthine effects due to antagonism of endogenous adenosine? Trends Pharmacol Sci 1: 129–132

    Article  CAS  Google Scholar 

  • Fredholm BB, Dunwiddie TV (1988) How does adenosine inhibit transmitter release? Trends Pharmacol Sci 9: 130–134

    Article  PubMed  CAS  Google Scholar 

  • Fyffe RE, Perl ER (1984) Is ATP a central synaptic mediator for certain primary afferent fibers from mammalian skin? Proc Natl Acad Sci 81: 6890–6893

    Article  PubMed  CAS  Google Scholar 

  • Gadangi P, Longaker M, Naime D, Levin RI, Recht PA, Montesinos MC, Buckley MT, Carlin G, Cronstein BN (1996) The anti-inflammatory mechanism of sulfasalazine is related to adenosine release at inflamed sites. J Immunol 156: 1937–1941

    PubMed  CAS  Google Scholar 

  • Galindo, A, Krnjevic K, Schwartz S (1967) Microiontophoretic studies on neurones in the cuneate nucleus. J Physiol (London) 192: 359–377

    CAS  Google Scholar 

  • Garrison CJ, Dougherty PM, Kajander KC, Carlton SM (1991) Staining of GFAP in lumbar spinal cord increases following a sciatic nerve constriction injury. Brain Res 565: 1–7

    Article  PubMed  CAS  Google Scholar 

  • Gaspardone A, Crea P, Tomai F, Versaci F, lamele M, Gioffré G, Chiariello, L, Gioffré P (1995) Muscular and cardiac adenosine-induced pain is mediated by AI receptors. JACC 25: 251–257

    Article  PubMed  CAS  Google Scholar 

  • Geiger JD, LaBella FS, Nagy JI (1984) Characterization and localization of adenosine receptors in rat spinal cord. J Neurosci 4: 2303–2310

    PubMed  CAS  Google Scholar 

  • Gilmore SA, Sims TJ, Leiting JE (1990) Astrocytic reactions in spinal gray matter following sciatic axotomy. Glia 3: 342–349

    Article  PubMed  CAS  Google Scholar 

  • Golembiowska K, White TD, Sawynok J (1995) Modulation of adenosine release from rat spinal cord by adenosine deaminase and adenosine kinase inhibitors. Brain Res 699: 315–320

    Article  PubMed  CAS  Google Scholar 

  • Golembiowska K, White TD, Sawynok J (1996) Adenosine kinase inhibitors augment release of adenosine from spinal cord slices. Eur J Pharmacol 307: 157162

    Google Scholar 

  • Goodman RR, Snyder SH (1982) Autoradiographic localization of adenosine receptors in rat brain using [3H]cyclohexyladenosine. J Neurosci 2: 1230–1241

    PubMed  CAS  Google Scholar 

  • Gross RA, Macdonald RL, Ryan-Jastrow T (1989) 2-Chloroadenosine reduces the N calcium current of cultured mouse sensory neurones in a pertussis toxin-sensitive manner. J Physiol 411: 585–595

    Google Scholar 

  • Gu JG, MacDermott AB (1997) Activation of ATP P2X receptors elicits glutamate release from sensory neuron synapses. Nature 389: 749–753

    Article  PubMed  CAS  Google Scholar 

  • Gu JG, Bardoni R, Magherini PC, MacDermott AB (1998) Effects of the P2—purinoceptor antagonists suramin and pyridoxal—phosphate-6—azophenyl-2′,4′—disulfonic acid on glutamatergic synaptic transmission in rat dorsal horn neurons of the spinal cord. Neurosci Lett 253: 167–170

    Article  PubMed  CAS  Google Scholar 

  • Guo A Vulchanova L Wang J Li X, Elde R (1999) Immunocytochemical localization of the vanilloid receptor 1 (VR1): relationship to neuropeptides, the P2X3 purinoceptor and IB4 binding sites, Eur J Neurosci 11: 946–958

    Google Scholar 

  • Hajos F, Csillik B, Knyihar-Csillik E (1990) Alterations in flial fibrillary acidic protein immunoreactivity in the upper dorsal horn of the rat spinal cord in the course of transganglionic degenerative atrophy and regenerative proliferation. Neurosci Lett 117: 8–13

    Article  PubMed  CAS  Google Scholar 

  • Handwerker HO, Reeh PW (1991) Pain and inflammation. In: Bond MR, Charlton JE, Woolf CJ (eds) Pain research and clinical management. Elsevier Science, New York, pp 59–70

    Google Scholar 

  • Heijne von M, Hao J-X, Yu W, Sollevi A, Xu X-J, Wiesenfeld-Hallin Z (1998) Reduced anti-allodynic effect of the adenosine AI-receptor agonist R-phenylisopropyladenosine on repeated intrathecal administration and lack of cross-tolerance with morphine in a rat model of central pain. Anesth Analg 87: 1367–1371

    Google Scholar 

  • Ho C, Hicks JL, Salter MW (1995) A novel P2-purinoceptor expressed by a subpopulation of astrocytes from the dorsal spinal cord of the rat Br J Pharmacol 116: 2909–2918

    CAS  Google Scholar 

  • Ho BT, Huo YY, Lu JG, Newman RA, Levin VA (1992) Analgesic activity of anticancer agent suramin Anticancer Drugs 3: 91–4

    Article  CAS  Google Scholar 

  • Holmgren M, Hedner J, Mellstrand T, Nordberg G, Hedner T (1986) Characterization of the antinociceptive effects of some adenosine analogues in the rat. NaunynSchmiedeberg’s Arch Pharmacol 334: 290–293

    Article  CAS  Google Scholar 

  • Holton P (1959) The liberation of adenosine triphosphate on antidromic stimulation of sensory nerves. J Physiol (London) 145: 494–504

    CAS  Google Scholar 

  • Holton FA, Holton P (1954) The capillary dilator substances in dry powders of spinal roots; a possible role of adenosine triphosphate in chemical transmission from nerve endings. J Physiol (London) 126: 124–140

    CAS  Google Scholar 

  • Idestrup C, Salter MW (1998) P2Y- and P2U-receptors differentially release intracellular Cat+ via the PLC/IP3 pathway in astrocytes from the dorsal spinal cord. Neuroscience 86: 913–923

    Article  PubMed  CAS  Google Scholar 

  • Illes P, Nörenberg W (1993) Neuronal ATP receptors and their mechanism of action. Trends Pharmacol Sci 14: 50–54

    Article  PubMed  CAS  Google Scholar 

  • Jahr, CE, Jessell TM (1983) ATP excites a subpopulation of rat dorsal horn neurones. Nature 304: 730–733

    Article  PubMed  CAS  Google Scholar 

  • Jensen TS (1996) Mechanisms of neuropathie pain. In Campbell JN (ed) Pain 1996–an updated review. Seattle: IASP Press, pp. 77–86

    Google Scholar 

  • Jessell TM, Jahr CE (1985) Fast and slow excitatory transmitters at primary afferent synapses in the dorsal horn of the spinal-cord. In: Advances in pain research and therapy. New York: Raven Press, pp. 31–39

    Google Scholar 

  • Jo YH, Schlichter R (1999) Synaptic corelease of ATP and GABA in cultured spinal. Nature Neuroscience 2: 241–245

    Article  PubMed  CAS  Google Scholar 

  • Jurna I (1984) Cyclic nucleotides and aminophylline produce different effects on nociceptive motor and sensory responses in the rat spinal cord. Archives Pharmacol 327: 23–30

    Article  CAS  Google Scholar 

  • Karlsten R, Gordh T, Hartvig P, Post C (1991) Effects of intrathecal injection of the adenosine receptor agonist R-phenylisopropyl-adenosine and N-ethylcarboxamideadenosine on nociception and motor function in the rat. Anesth Analg 71: 60–64

    Google Scholar 

  • Karlsten R, Gordh T, Post C (1992) Local antinociceptive and hyperalgesic effects in the formalin test after peripheral administration of adenosine analogues in mice. Pharmacol Toxicol 70: 434–438

    Article  PubMed  CAS  Google Scholar 

  • Karlsten R, Gordh T Jr, Svensson BA (1994) A neurotoxicological evaluation of the spinal cord after chronic intrathecal injection of R-phenylisopropyl adenosine ( R-PIA) in the rat. Anesth Analg 77: 731–736

    Google Scholar 

  • Karlsten R, Kristensen J, Gordh T Jr (1992) R-Phenylisopropyl-adenosine increases spinal cord blood flow after intrathecal injection in the rat. Anesth Analg 75: 972–976

    Article  PubMed  CAS  Google Scholar 

  • Karlsten R, Post C, Hide I, Daly JW (1991) The antinociceptive effect of intrathecally administered adenosine analogs in mice correlates with the affinity for the Ai-adenosine receptor. Neurosci Lett 121: 267–270

    Article  PubMed  CAS  Google Scholar 

  • Karlsten R, Gordh T Jr (1995) An A1-selective adenosine agonist abolishes allodynia elicited by vibration and touch after intrathecal injection. Anesth Analg 80: 844–847

    PubMed  CAS  Google Scholar 

  • Keil II GJ, DeLander GE (1992) Spinally-mediated antinociception is induced in mice by an adenosine kinase-, but not by an adenosine deaminase-, inhibitor. Life Sci 51:PL171–176

    Google Scholar 

  • Keil II GJ, DeLander GE (1994) Adenosine kinase and adenosine deaminase inhibition modulate spinal adenosine-and opioid agonist-induced antinociception in mice. Eur J Pharmacol 271: 37–46

    Article  PubMed  CAS  Google Scholar 

  • Keil II GJ, DeLander GE (1995) Time-dependent antinociceptive interactions between opioids and nucleoside transport inhibitors. J Pharmacol Exp Therap 274: 1387 1392

    Google Scholar 

  • Keil GJ 2nd, DeLander GE (1996) Altered sensory behaviors in mice following manipulation of endogenous spinal adenosine neurotransmission. Eur J Pharmacol 312: 7–14

    Article  PubMed  CAS  Google Scholar 

  • Koltzenburg M, Lundberg LER, Torebjörk HE (1992) Dynamic and static components of mechanical hyperalgesia in human hairy skin. Pain 51: 207–219

    Article  PubMed  CAS  Google Scholar 

  • Krishtal OA, Marchenko SM, Obukhov AG (1988) Cationic channels activated by extracellular ATP in rat sensory neurons. Neurosci 27: 995–1000

    Article  CAS  Google Scholar 

  • Krishtal OA, Marchenko SM, Pidoplichko VI (1983) Receptor for ATP in the membrane of mammalian sensory neurones. Neurosci Lett 35: 41–45

    Article  PubMed  CAS  Google Scholar 

  • Lagerqvist B, Sylvén C, Beermann B, Helmius G, Waldenström A (1990) Intracoronary adenosine causes angina pectoris like pain–an inquiry into the nature of visceral pain. Cardiovasc Res 24: 609–613

    Article  PubMed  CAS  Google Scholar 

  • Le KT, Villeneuve P, Ramjaun AR, McPherson PS, Beaudet A, Seguela P (1998) Sensory presynaptic and widespread somatodendritic immunolocalization of central ionotropic P2X ATP receptors. Neuroscience 83: 177–190

    Article  PubMed  CAS  Google Scholar 

  • Lewis C, Neidhart S, Holy C, North RA, Buell G, Surprenant A (1995) Coexpression of P2X2 and P2X3 receptor subunits can account for ATP-gated currents in sensory neurons. Nature 377: 432–435

    Article  PubMed  CAS  Google Scholar 

  • Li J, Perl ER (1995) ATP modulation of synaptic transmission in the spinal substantia gelatinosa. J Neurosci 15: 3357–3365

    PubMed  CAS  Google Scholar 

  • Li J, Perl ER (1994) Adenosine inhibition of synaptic transmission in the substantia gelatinosa. J Neurophysiol 72: 1611–1621

    PubMed  CAS  Google Scholar 

  • Linden J (1994) Cloned adenosine A3 receptors: Pharmacological properties, species differences and receptor functions. Trends Pharmacol Sci 15: 298–306

    Article  PubMed  CAS  Google Scholar 

  • Macdonald RL, Skerritt JH, Werz MA (1986) Adenosine agonists reduce voltage-dependent calcium conductance of mouse sensory neurones in cell culture. J Physiol (London) 370: 75–90

    CAS  Google Scholar 

  • Malmberg AB, Yaksh TL (1993) Pharmacology of the spinal action of ketorolac, morphine, ST-91, U50,488H, and L-PIA on the formalin test and an isobolographic analysis of the NSAID interaction. Anesthesiology 79: 270–281

    Article  PubMed  CAS  Google Scholar 

  • Marchand S, Li J, Charest J (1995) Effects of caffeine on analgesia from transcutaneous electrical nerve stimulation. NEJM 333: 325–326

    Article  PubMed  CAS  Google Scholar 

  • Meller, ST, Dykstra C, Grzybycki D, Murphy S, Gebhart GF (1994) The possible role of glia in nociceptive processing and hyperalgesia in the spinal cord of the rat. Neuropharmacol 33: 1471–1478

    Article  CAS  Google Scholar 

  • Minami T, Uda R, Horiguchi S, Ito S, Hyodo M, Hayaishi O (1992a) Effects of clonidine and baclofen on prostaglandin F2ß-induced allodynia in conscious mice. Pain Res 7: 129–134

    Google Scholar 

  • Minami T, Uda R, Horiguchi S, Ito S, Hyodo M, Hayaishi O (1992b) Allodynia evoked by intrathecal administration of prostaglandin F2ß to conscious mice. Pain 50: 223–229

    Article  PubMed  CAS  Google Scholar 

  • Murray TF, Cheney DL (1982) Neuronal location of N6-cyclohexyl[3Hladenosine binding sites in rat and guinea pig brain. Neuropharmacol 21: 575–580

    Article  CAS  Google Scholar 

  • Nagaoka H, Sakurada S, Sakurada T, Takeda S, Nakagawa Y, Kisara K, Arai Y (1993) Theophylline-induced nociceptive behavioral response in mice: Possible indirect interaction with spinal N-methyl-D-aspartate receptors. Neurochem Int 22: 69–74

    Google Scholar 

  • Pappagallo M, Gaspardone A, Tomai F, famele M, Crea P, Gioffré P (1993) Analgesic effect of bambiphylline on pain induced by intradermal injection of adenosine. Pain 53: 199–204

    Article  PubMed  CAS  Google Scholar 

  • Phillis JW, Kirkpatrick JR (1978) The actions of adenosine and various nucleosides and nucleotides on the isolated toad spinal cord. Gen Pharmacol 9: 239–247

    Article  PubMed  CAS  Google Scholar 

  • Poon A, Sawynok J (1995) Antinociception by adenosine analogs and ana adenosine kinase inhibitor: Dependence on formalin concentration. Eur J Pharmacol 286: 177–184

    Google Scholar 

  • Ralevic V, Burnstock G (1998) Receptors for purines and pyrimidines. Pharmacol Rev 50: 413–492

    PubMed  CAS  Google Scholar 

  • Rane K, Karlsten R, Sollevi A, Gordh T Jr, Svensson B (1999) Spinal cord morphology after chronic intrathecal administration of adenosine in the rat. Acta Anesth Scand 43: 1035–1040

    Article  CAS  Google Scholar 

  • Rane K, Segerdahl M, Goiny M, Sollevi A (1998) Intrathecal adenosine administration — A phase 1 clinical safety study in healthy volunteers, with additional evaluation of its influence on sensory thresholds and experimental pain. Anesthesiology 89: 1108–1115

    Article  PubMed  CAS  Google Scholar 

  • Rane K, Sollevi A, Segerdahl M (2000) Intrathecal adenosine administration in abdominal hystepectomy lacks analgesic effect. Acta Anaesth Scand 44: 868–872

    Article  PubMed  CAS  Google Scholar 

  • Rang HP, Bevan S, Dray A (1991) Chemical activation of nociceptive peripheral neurones. British Med Bull 47: 534–548

    CAS  Google Scholar 

  • Rees H, Sluka KA, Westlund KN, Willis WD (1995) The role of glutamate and GABA receptors in the generation of dorsal root reflexes by acute arthritis in the anaesthetized rat. J Physiol (Lond) 484: 437–445

    CAS  Google Scholar 

  • Reeve AJ, Dickenson AH (1995a) The roles of spinal adenosine receptors in the control of acute and more persistent nociceptive responses of dorsal horn neurones in the anaesthetized rat. Br J Pharmacol 116: 2221–2228

    Article  PubMed  CAS  Google Scholar 

  • Reeve AJ, Dickenson AH (1995b) Electrophysiological study on spinal antinociceptive interactions between adenosine and morphine in the dorsal horn of the rat. Neurosci Lett 194: 81–84

    Article  PubMed  CAS  Google Scholar 

  • Reppert SM, Weaver DR, Stehle JH, Rivkees SA (1991) Molecular cloning and characterization of a rat A,-adenosine receptor that is widely expressed in brain and spinal cord. Molec Endocrinol 5: 1037–1048

    Article  CAS  Google Scholar 

  • Rivkees SA (1995) The ontogeny of cardiac and neural A, adenosine receptor expression in rats. Develop Brain Res 89: 202–213

    Article  CAS  Google Scholar 

  • Rivkees SA, Reppert SM (1992) RFL9 encodes an A2h adenosine receptor. Mol Endocrinol 6: 1598–1604

    Article  PubMed  CAS  Google Scholar 

  • Rosengren S, Bong GW, Firestein GS (1995) Anti-inflammatory effects of an adenosine kinase inhibitor: Decreased neutrophil accumulation and vascular leakage. J Immunol 154: 5444–5451

    Google Scholar 

  • Sajjadi FG, Takabayashi K, Foster AC, Domingo RC, Firestein GS (1996) Inhibition of TNF-a by adenosine. Role of A3 adenosine receptors. J Immunol 156: 3435–3442

    PubMed  CAS  Google Scholar 

  • Salt TE, Hill RG (1983) Excitation of single sensory neurones in the rat caudal trigeminal nucleus by iontophoretically applied adenosine 5’-triphosphate. Neurosci Lett 35: 53–57

    Article  PubMed  CAS  Google Scholar 

  • Salter MW, De Koninck Y (1999) An ambiguous fast synapse: a new twist in the tale of two transmitters. Nature Neuroscience 2: 199–200

    Article  PubMed  CAS  Google Scholar 

  • Salter MW, DeKoninck Y, Henry JL (1992) ATP-sensitive K+ channels mediate an IPSP in dorsal horn neurones elicited by sensory stimulation. Synapse 11: 214–220

    Article  PubMed  CAS  Google Scholar 

  • Salter MW, DeKoninck Y, Henry JL (1993) Physiological roles for adenosine and ATP in synaptic transmission in the spinal dorsal horn. Prog Neurobiol 41: 125–156

    Article  PubMed  CAS  Google Scholar 

  • Salter MW, Henry JL (1985) Effects of adenosine 5’-monophosphate and adenosine 5’-triphosphate on functionally identified units in the cat spinal dorsal horn. Evidence for a differential effect of adenosine 5′-triphosphate on nociceptive vs nonnociceptive units. Neurosci 15: 815–825

    Article  CAS  Google Scholar 

  • Salter MW, Henry JL (1987) Evidence that adenosine mediates the depression of spinal dorsal horn neurones induced by peripheral vibration in the cat. Neurosci 22: 631–650

    Article  CAS  Google Scholar 

  • Salter MW, Hicks JL (1994) ATP-evoked increases in intracellular calcium in neurons and glia from the dorsal spinal cord. J Neurosci 14: 1563–1575

    PubMed  CAS  Google Scholar 

  • Salter MW, Hicks JL (1995) ATP causes release of intracellular Ca’ via the phospholipase Cß/IP3 pathway in astrocytes from the dorsal spinal cord. J Neurosci 15: 2961–2971

    PubMed  CAS  Google Scholar 

  • Santicioli P, Del Bianco E, Maggi CA (1993) Adenosine Ai receptors mediate the presynaptic inhibition of calcitonin gene-related peptide release in the rat spinal cord. Eur J Pharmacol 231: 139–142

    Article  PubMed  CAS  Google Scholar 

  • Santicioli P, Del Bianco E, Tramontana M, Maggi CA (1992) Adenosine inhibits action potential-dependent release of calcitonin gene-related peptide-and substance P-like immunoreactivities from primary afferents in rat spinal cord. Neurosci Lett 144: 211–214

    Article  PubMed  CAS  Google Scholar 

  • Sawynok J (1998) Adenosine receptor activation and nociception. Eur J Pharmacol 317: 1–11

    Article  Google Scholar 

  • Sawynok J, Downie JW, Reid AR, Cahill CM, White TD (1993) ATP release from dorsal spinal cord synaptosomes: Characterization and neural origin. Brain Res 610: 32–38

    Google Scholar 

  • Sawynok J, Sweeney MI (1989) The role of purines in nociception. Neurosci 32: 557–569

    Article  CAS  Google Scholar 

  • Sawynok J, Sweeney MI, White TD (1986) Classification of adenosine receptors mediating antinociception in the rat spinal cord. Br J Pharmacol 88: 923–930

    Article  PubMed  CAS  Google Scholar 

  • Sawynok J, Sweeney MI, White TD (1989) Adensine release may mediate spinal analgesia by morphine. Trends Pharmacol Sci 10: 186–189

    Article  PubMed  CAS  Google Scholar 

  • Sawynok J, Reid A, Poon A (1998) Pain Peripheral antinociceptive effect of an adenosine kinase inhibitor, with augmentation by an adenosine deaminase inhibitor, in the rat formalin test 74: 75–81

    CAS  Google Scholar 

  • Sawynok J, Zarrindast MR, Reid AR, Doak GJ (1997) Adenosine A3 receptor activation produces nociceptive behaviour and edema by release of histamine and 5—hydroxytryptamine. Eur J Pharmacol 333: 1–7

    Article  PubMed  CAS  Google Scholar 

  • Segerdahl. M, Ekblom A, Sjölund K-F, Belfrage M, Forsberg C, Sollevi A (1995) Systemic adenosine attenuates touch evoked allosynia induced by mustard oil in humans. NeuroReport 6: 753–756

    Google Scholar 

  • Segerdahl M, Ekblom A, Sandelin K, Wickman M, Sollevi A (1995b) Perioperative adenosine infusion reduces the requirements for isoflurane and postoperative analgesics. Anesth & Analg 80: 1145–1149

    CAS  Google Scholar 

  • Segerdahl M, Ekblom A, Sollevi A (1994) The influence of adenosine, ketamine and morphine on experimentally induced ischemic pain in healthy volunteers. Anesth Analg 79: 787–791

    Article  PubMed  CAS  Google Scholar 

  • Segerdahl M, Irestedt L, Sollevi A (1997) Antinociceptive effect of perioperative adenosine infusion in hysterectomy. Acta Anaesthiol Scand 41: 473–479

    Article  CAS  Google Scholar 

  • Segerdahl M, Persson E, Ekblom A, Sollevi A (1996) Perioperative adenosine infusion reduces isoflurane requirements during general anesthesia for shoulder surgery. Acta Anaesthiol Scand 40: 792–797

    Article  CAS  Google Scholar 

  • Shapiro E, Castellucci VF, Kandel ER (1980) Presynaptic inhibition in aplysia involves a decrease in the Ca’ current of the presynaptic neuron. Proc Natl Acad Sci 77: 1185–1189

    Article  PubMed  CAS  Google Scholar 

  • Sjölund K-F, Segerdahl M, Sollevi A (1999) Adenosine reduces secondary hyperalgesia in two human models of cutaneous inflammatory pain. Anesth Analg 88: 605–610

    PubMed  Google Scholar 

  • Sollevi A, Belfrage M, Lundeberg T, Segerdahl M, Hansson P (1995) Systemic adenosine infusion: A new treatment modality to alleviate neuropathie pain. Pain 61: 155–158

    Google Scholar 

  • Sollevi A (1986) Cardiovascular effects of adenosine in man; Possible clinical implications. Progr Neurobiol 27: 319–349

    Article  CAS  Google Scholar 

  • Sosnowski M, Yaksh TL (1989) Role of spinal adenosine receptors in modulating the hyperesthesia produced by spinal glycine receptor antagonism. Anesth Analg 69: 587–892

    Article  PubMed  CAS  Google Scholar 

  • Sosnowski M, Stevens CW, Yaksh TL (1989) Assessment of the role of Al/A2 adenosine receptors mediating the purine antinociception, motor, and autonomic function in the rat spinal cord. J Pharmacol Exp Therap 250: 915–922

    CAS  Google Scholar 

  • Stehle JH, Rivkees SA, Lee JJ, Weaver DR, Deeds JD, Reppert SM (1992) Molecular cloning and expression of the cDNA for a novel A2 adenosine receptor subtype. Molecular Endocrinol 6: 384–393

    Article  CAS  Google Scholar 

  • Suprenant A, Buell G, North RA (1995) P2x receptors bring new structure to ligand-gated ion channels. Trends Neurosci 18: 224–229

    Article  Google Scholar 

  • Svensson M, Eriksson P, Pesson JKE, Molander C, Arvidsson Aldskogius H (1993) The response of central glia to peripheral nerve injury. Brain Res Bull 30: 499506

    Google Scholar 

  • Sylvén C (1993) Mechanisms of pain in angina pectoris— a critical review of the adenosine hypothesis. Cardiovasc Drug Ther 7: 745–759.

    Article  Google Scholar 

  • Sylvén C, Beermann B, Jonzon B, Brandt R (1986) Angina pectoris-like pain provoked by intravenous adenosine in healthy volunteers. Br Med J 293: 227–230.

    Article  Google Scholar 

  • Sylvén C, Eriksson B, Jensen J, Geigant E, Hallin RG (1996) Analgesic effects of adeno- sine during exercise-provoked myocardial ischemia. NeuroReport 7: 1521–1525

    Article  PubMed  Google Scholar 

  • Sylvén C, Beermann B, Edlund A, Lewander R, Jonzon B, Mogensen L (1988a) Provocation of chest pain in patients with coronary insufficiency using the vasodilator adenosine. Eur Heart J 9: 6–10

    Article  PubMed  Google Scholar 

  • Sylvén C, Jonzon B, Fredholm BB, Kaijer L (1988b) Adenosine injected into the brachial artery produces ischaemia-like pain or discomfort in the forearm. Cardiovasc Res 22: 674–678

    Article  PubMed  Google Scholar 

  • Taiwo YO, Levine JD (1990) Direct cutaneous hyperalgesia induced by adenosine. Neurosci 38: 757–762

    Article  CAS  Google Scholar 

  • Taiwo, YO, Levine JD (1991) Further confirmation of the role of adenyl cyclase and of cAMP-dependent protein kinase in primary afferent hyperalgesia. Neurosci 44: 131–135

    Article  CAS  Google Scholar 

  • Vulchanova L, Riedl MS, Shuster SJ, Stone LS, Hargreaves KM, Buell G, Surprenant A, North RA, Elde R (1998) P2X3 is expressed by DRG neurons that terminate in inner lamina Il. Eur J Neurosci 10: 3470–3478

    Article  PubMed  CAS  Google Scholar 

  • Watt AH, Lewis DJM, Home JJ, Smith PM (1987) Reproduction of epigastric pain of duodenal ulceration by adenosine. Br Med J 294: 10–12

    Article  CAS  Google Scholar 

  • Welch SP, Dunlow LD (1993) Antinociceptive activity of intrathecally administered potassium channel openers and opioid agonists: A common mechanism of action? J Pharmacol Exp Therap 267: 390–399

    CAS  Google Scholar 

  • White TD, Downie JW, Leslie RA (1985) Characteristics of K+- and veratridine-induced release of ATP from synaptosomes prepared from dorsal and ventral spinal cord. Brain Res 334: 372–374

    Article  PubMed  CAS  Google Scholar 

  • Woolf CJ, Doubell TP (1994) The pathophysiology of chronic pain-increased sensitivity to low threshold A beta—fibre inputs. Curr Opin Neurobiol 4: 525–534

    Article  PubMed  CAS  Google Scholar 

  • Woolf CJ. Thompson JW (1994) Stimulation-induced analgesia: Transcutaneous electrical nerve stimulation (TENS) and vibration. In: PD Wall and R Melzack (eds) Textbook of Pain. Edinburgh: Churchill Livingstone, pp 1191–1208

    Google Scholar 

  • Yamamoto T, Yaksh TL (1993) Stereospecific effects of a nonpeptidic NK1 selective antagonist, CP-96,345: Antinociception in the absence of motor dysfunction. Life Sci 49: 1955–1963

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Salter, M.W., Sollevi, A. (2001). Roles of Purines in Nociception and Pain. In: Abbracchio, M.P., Williams, M. (eds) Purinergic and Pyrimidinergic Signalling I. Purinergic and Pyrimidinergic Signalling, vol 151 / 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-09604-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-09604-8_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08742-4

  • Online ISBN: 978-3-662-09604-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics