Cytokines in Degenerative Brain Diseases: Lessons from Transgenic Animals

  • U. L. M. Eisel
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 265)


Neurodegeneration occurs not only in brain injury, i.e. after trauma or ischemia. It is also part of the typical pathology in various disorders such as Alzheimer’s disease, Huntington’s chorea, Parkinson’s syndrome, AIDS dementia, Creuzfeldt-Jakob disease and other prion derived pathologies, the autoimmune disease multiple sclerosis, and during viral or bacterial infections.


Transgenic Animal Experimental Autoimmune Encephalitis Transmembrane Form Primary Demyelination Tumor Necrosis Factor Expression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Agnello D, Villa P, Ghezzi P (2000) Increased tumor necrosis factor and interleukin-6 production in the central nervous system of interleukin-10-deficient mice. Brain Res 869:241–243PubMedCrossRefGoogle Scholar
  2. Akassoglou K, Bauer J, Kassiotis G, Pasparakis M, Lassmann H, Kollias G, Probert L (1998) Oligodendrocyte apoptosis and primary demyelination induced by local TNF/p55TNF receptor signaling in the central nervous system of transgenic mice. Am J Pathol 153:801–813PubMedCrossRefGoogle Scholar
  3. Akassoglou K, Probert L, Kontogeorgos G, Kollias G (1997) Astrocyte-specific but not neuron-specific transmembrane TNF triggers inflammation and degeneration in the central nervous system of transgenic mice. J Immunol 158:438–445PubMedGoogle Scholar
  4. Akwa Y, Hassett DE, Eloranta ML, Sandberg K, Masliah E, Powell H, Whitton JL, Bloom FE, Campbell IL (1998) Transgenic expression of IFN-α in the central nervous system of mice protects against lethal neurotropic viral infection but induces inflammation and neurodegeneration. J Immunol 161:5016–5026PubMedGoogle Scholar
  5. Alheim K, Chai Z, Fantuzzi G, Hasanvan H, Malinowsky D, Di Santo E, Ghezzi P, Dinarello CA, Bartfai T (1997) Hyperresponsive febrile reactions to interleukin (IL) 1α andIL-1β, and altered brain cytokine mRNA and serum cytokine levels, in IL-1β-deficient mice. Proc Natl Acad Sci USA 94:2681–2686Google Scholar
  6. Aloe L, Properzi F, Probert L, Akassoglou K, Kassiotis G, Micera A, Fiore (1999) Learning abilities, NGF and BDNF brain levels in two lines of TNF-α transgenic mice, one characterized by neurological disorders, the other phenotypically normal. Brain Res 840:125–137PubMedCrossRefGoogle Scholar
  7. Asensio VC, Lassmann S, Pagenstecher A, Steffensen SC, Henriksen SJ, Campbell IL (1999) CIO is a novel chemokine expressed in experimental inflammatory demyelinating disorders that promotes recruitment of macrophages to the central nervous system. Am J Pathol 154:1181–1191PubMedCrossRefGoogle Scholar
  8. Barnum SR, Jones JL, Muller-Ladner U, Samimi A, Campbell IL (1996) Chronic complement C3 gene expression in the CNS of transgenic mice with astrocyte-targeted interleukin-6 expression. Glia 18:107–117PubMedCrossRefGoogle Scholar
  9. Bellinger FP, Madamba SG, Campbell IL, Siggins GR (1995) Reduced long-term potentiation in the dentate gyrus of transgenic mice with cerebral overexpression of interleukin-6. Neurosci Lett 198:95–98PubMedCrossRefGoogle Scholar
  10. Brett FM, Mizisin AP, Powell HC, Campbell IL (1995) Evolution of neuropathologic abnormalities associated with blood-brain barrier breakdown in transgenic mice expressing interleukin-6 in astrocytes. J Neuropathol Exp Neurol 54:766–775PubMedCrossRefGoogle Scholar
  11. Campbell IL, Abraham CR, Masliah E, Kemper P, Inglis JD, Oldstone MB, Mucke L (1993) Neurologic disease induced in transgenic mice by cerebral overexpression of interleukin 6. Proc Natl Acad Sci USA 90:10061–10065PubMedCrossRefGoogle Scholar
  12. Carr DJ, Campbell IL (1999) Transgenic expression of interleukin-6 in the central nervous system confers protection against acute herpes simplex virus type-1 infection. J Neurovirol 5:449–457PubMedCrossRefGoogle Scholar
  13. Chavany C, Vicario-Abejon C, Miller G, Jendoubi M (1998) Transgenic mice for interleukin 3 develop motor neuron degeneration associated with autoimmune reaction against spinal cord motor neurons. Proc Natl Acad Sci USA 95:11354–11359PubMedCrossRefGoogle Scholar
  14. Cheng B, Christakos S, Mattson MP (1994) Tumor necrosis factors protect neurons against metabolic-excitotoxic insults and promote maintenance of calcium homeostasis. Neuron 12:139–153PubMedCrossRefGoogle Scholar
  15. Chiang CS, Powell HC, Gold LH, Samimi A, Campbell IL (1996) Macrophage/microglial-mediated primary demyelination and motordisease induced by the central nervous system production of interleukin-3 in transgenic mice. J Clin Invest 97:1512–1524PubMedCrossRefGoogle Scholar
  16. Chiang CS, Stalder A, Samimi A, Campbell IL (1994) Reactive gliosis as a consequence of interleukin-6 expression in the brain: studies in transgenic mice. Dev Neurosci 16:212–221PubMedCrossRefGoogle Scholar
  17. Chofflon M (2000) Recombinant human interferon β in relapsing-remitting multiple sclerosis: a review of the major clinical trials. Eur J Neurol 7:369–380PubMedCrossRefGoogle Scholar
  18. Clark WM, Rinker LG, Lessov NS, Hazel K, Hill JK, Stenzel-Poore M, Eckenstein F (2000) Lack of interleukin-6 expression is not protective against focal central nervous system ischemia. Stroke 31:1715–1720PubMedCrossRefGoogle Scholar
  19. Corbin JG, Kelly D, Rath EM, Baerwald KD, Suzuki K, Popko B (1996) Targeted CNS expression of interferon-γ in transgenic mice leads to hypomyelination, reactive gliosis, and abnormal cerebellar development. Mol Cell Neurosci 7:354–370PubMedCrossRefGoogle Scholar
  20. Critchfield JM, Racke MK, Zuniga-Pflucker JC, Cannella B, Raine CS, Goverman J, Lenardo M (1994) T cell deletion in high antigen dose therapy of autoimmune encephalomyelitis. Science 263:1139–1143PubMedCrossRefGoogle Scholar
  21. de la Monte SM (1999) Molecular abnormalities of the brain in Down syndrome: relevance to Alzheimer’s neurodegeneration. J Neural Transm Suppl 57:1–19PubMedGoogle Scholar
  22. Ewend MG, Thompson RC, Anderson R, Sills AK, Staveley-O’Carroll K, Tyler BM, Hanes J, Brat D, Thomas M, Jaffee EM, Pardoll DM, Brem HJ (2000) Intracranial paracrine interleukin-2 therapy stimulates prolonged antitumor immunity that extends outside the central nervous system. Immunotherapy 23:438–448CrossRefGoogle Scholar
  23. Fattori E, Lazzaro D, Musiani P, Modesti A, Alonzi T, Ciliberto G (1995) IL-6 expression in neurons of transgenic mice causes reactive astrocytosis and increase in ramified microglial cells but no neuronal damage. Eur J Neurosci 7:2441–2449PubMedCrossRefGoogle Scholar
  24. Fiore M, Probert L, Kollias G, Akassoglou K, Alleva E, Aloe L (1996) Neurobehavioral alterations in developing transgenic mice expressing TNF-α in the brain. Brain Behav Immun 10:126–138PubMedCrossRefGoogle Scholar
  25. Friedlander RM, Gagliardini V, Hara H, Fink KB, Li W, MacDonald G, Fishman MC, Greenberg AH, Moskowitz MA, Yuan J (1997) Expression of a dominant negative mutant of interleukin-1β converting enzyme in transgenic mice prevents neuronal cell death induced by trophic factor withdrawal and ischemic brain injury. J Exp Med 185:933–940PubMedCrossRefGoogle Scholar
  26. Furlan R, Martino G, Galbiati F, Poliani PL, Smiroldo S, Bergami A, Desina G, Comi G, Flavell R, Su MS, Adorini L (1999) Caspase-1 regulates the inflammatory process leading to autoimmune demyelination. J Immunol 163:2403–2409PubMedGoogle Scholar
  27. Furukawa K, Mattson MP (1998) The transcription factor NF-kappaB mediates increases in calcium-currents and decreases in NMDA- and AMPA/kainate-induced currents induced by tumor necrosis factor-α in hippocampal neurons. J Neurochem 70:1876–1886PubMedCrossRefGoogle Scholar
  28. Gardner SM, Mock BA, Hilgers J, Huppi KE, Roeder WD (1987) Mouse lymphotoxin and tumor necrosis factor: structural analysis of the cloned genes, physical linkage, and chromosomal position. J Immunol 139:476–483PubMedGoogle Scholar
  29. Gary DS, Bruce-Keller AJ, Kindy MS, Mattson MP (1998) Ischemic and excitotoxic brain injury is enhanced in mice lacking the p55 tumor necrosis factor receptor. J Cereb Blood Flow Metab 18:1283–1287PubMedCrossRefGoogle Scholar
  30. Glabinski AR, Krakowski M, Han Y, Owens T, Ransohoff RM (1999) Chemokine expression in GKO mice (lacking interferon-y) with experimental autoimmune encephalomyelitis. J Neurovirol 5:95–101PubMedCrossRefGoogle Scholar
  31. Glazner GW, Mattson MP (2000) Differential effects of BDNF, ADNF9, and TNF α on levels of NMDA receptor subunits, calcium homeostasis, and neuronal vulnerability to excitotoxicity. Exp Neurol 161:442–452PubMedCrossRefGoogle Scholar
  32. Grell M, Douni E, Wajant H, Lohden M, Clauss M, Maxeiner B, Georgopoulos S, Lesslauer W, Kollias G, Pfizenmaier K, Scheurich P (1995) The transmembrane form of tumor necrosis factor is the prime activating ligand of the 80kDa tumor necrosis factor receptor. Cell Dec 83:793–802CrossRefGoogle Scholar
  33. Gruol DL, Nelson TE (1997) Physiological and pathological roles of interleukin-6 in the central nervous system. Mol Neurobiol 15:307–339PubMedCrossRefGoogle Scholar
  34. Hernandez J, Molinero A, Campbell IL, Hidalgo J (1997) Transgenic expression of interleukin 6 in the central nervous system regulates brain metallothionein-I and-III expression in mice. Brain Res Mol Brain Res 48:125–131PubMedCrossRefGoogle Scholar
  35. Heyser CJ, Masliah E, Samimi A, Campbell IL, Gold LH (1997) Progressive decline in avoidance learning paralleled by inflammatory neurodegeneration in transgenic mice expressing interleukin 6 in the brain. Proc Natl Acad Sci USA 94:1500–1505PubMedCrossRefGoogle Scholar
  36. Horai R, Asano M, Sudo K, Kanuka H, Suzuki M, Nishihara M, Takahashi M, Iwakura Y (1998) Production of mice deficient in genes for interleukin (IL)-la, IL-Iß, IL-la/ß, and IL-1 receptorantagonist shows that IL-1β is crucial inturpentine-induced fever development and glucocorticoid secretion. J Exp Med 187:1463–1475PubMedCrossRefGoogle Scholar
  37. Horwitz MS, Evans CF, McGavern DB, Rodriguez M, Oldstone MB (1997) Primary demyelination in transgenic mice expressing interferon-γ. Nat Med 3:1037–1041PubMedCrossRefGoogle Scholar
  38. Hull M, Strauss S, Berger M, Volk B, Bauer J (1996) The participation of interleukin-6, a stress-inducible cytokine, in the pathogenesis of Alzheimer’s disease. Behav Brain Res 78:37–41PubMedCrossRefGoogle Scholar
  39. Kassiotis G, Bauer J, Akassoglou K, Lassmann H, Kollias G, Probert L (1999) A tumor necrosis factor-induced model of human primary demyelinating diseases develops in immunodeficient mice. Eur J Immunol, pp 912–917Google Scholar
  40. Kordower JH, Isacson O, Emerich DF (1999) Cellular delivery of trophic factors for the treatment of Huntington’s disease: is neuroprotection possible? Exp Neurol 159:4–20PubMedCrossRefGoogle Scholar
  41. Krakowski M, Owens T (1996) Interferon-γ confers resistance to experimental allergic encephalomyelitis. Eur J Immunol 26:1641–1646PubMedCrossRefGoogle Scholar
  42. Krueger JM, Fang J, Taishi P, Chen Z, Kushikata T, Gardi J (1998) Sleep. A physiological role for IL-1β and TNF-α. Ann NY Acad Sci 856:148–159PubMedCrossRefGoogle Scholar
  43. Lavi E, Wang Q (1995) The protective role of cytotoxic T cells and interferon against Coronavirus invasion of the brain. Adv Exp Med Biol 380:145–149PubMedCrossRefGoogle Scholar
  44. Lim GP, Yang F, Chu T, Chen P, Beech W, Teter B, Tran T, Ubeda O, Ashe KH, Frautschy SA, Cole GM (2000a) Ibuprofen suppresses plaque pathology and inflammation in a mouse model for Alzheimer’s disease. J Neurosci 20:5709–5714PubMedGoogle Scholar
  45. Lim GP, Yang F, Chu T, Chen P, Beech W, Teter B, Tran T, Ubeda O, Ashe KH, Frautschy SA, Cole GM (2000b) Central nervous system-initiated inflammation and neurotrophism in trauma: IL-1β is required for the production of ciliary neurotrophic factor. J Immunol 165:2232–2239Google Scholar
  46. Lundkvist J, Sundgren-Andersson AK, Tingsborg S, Ostlund P, Engfors C, Alheim K, Bartfai T, Iverfeldt K, Schultzberg M (1999) Acute-phase responses in transgenic mice with CNS overexpression of IL-1 receptor antagonist. Am J Physiol 276:R644—R651PubMedGoogle Scholar
  47. Mabbott NA, Williams A, Farquhar CF, Pasparakis M, Kollias G, Bruce ME (2000) Tumor necrosis factor α-deficient, but not interleukin-6-deficient, mice resist peripheral infection with scrapie. J Virol 2000 74:3338–3344PubMedCrossRefGoogle Scholar
  48. Maroun LE, Heffernan TN, Hallam DM (2000) Partial IFN-α/β and IFN-γ receptor knockout trisomy 16 mouse fetuses show improved growth and cultured neuron viability. J Interferon Cytokine Res 20:197–203PubMedCrossRefGoogle Scholar
  49. Mehlhorn G, Hollborn M, Schliebs R (2000) Induction of cytokines in glial cells surrounding cortical β-amyloid plaques in transgenic Tg2576 mice with Alzheimer pathology. Int J Dev Neurosci 18:423–431PubMedCrossRefGoogle Scholar
  50. Morganti-Kossman MC, Kossmann T (1995) The Immunology of Brain Injury. In: Rothwell NJ (ed) Immune response in the nervous system. Bios, OxfordGoogle Scholar
  51. Mrkic B, Pavlovic J, Rulicke T, Volpe P, Buchholz CJ, Hourcade D, Atkinson JP, Aguzzi A, Cattaneo R (1998) Measles virus spread and pathogenesis in genetically modified mice. J Virol 72:7420–7427PubMedGoogle Scholar
  52. Muller U, Jongeneel CV, Nedospasov SA, Lindahl KF, Steinmetz M (1987) Tumour necrosis factor and lymphotoxin genes map close to H-2D in the mouse major histocompatibility complex. Nature 325:265–267PubMedCrossRefGoogle Scholar
  53. Nalivaeva NN, Rybakina EG, Pivanovich IYu, Kozinets IA, Shanin SN, Bartfai T (2000) Activation of neutral sphingomyelinase by IL-Iß requires the type 1 interleukin 1 receptor. Cytokine 12:229–232PubMedCrossRefGoogle Scholar
  54. Nedospasov SA, Shakhov AN, Turetskaya RL, Mett VA, Azizov MM, Georgiev GP, Korobko VG, Dobrynin VN, Filippov SA, Bystrov NS, et al. (1986) Tandem arrangement of genes coding for tumor necrosis factor (TNF-α) and lymphotoxin (TNF-ß) in the human genome. Cold Spring Harbor Symp Quant Biol 51:611–624PubMedCrossRefGoogle Scholar
  55. Ohta M, Mitomi T, Kimura M, Habu S, Katsuki M (1990) Anomalies in transgenic mice carrying the human interleukin-2 gene. Tokai J Exp Clin Med 15:307–315PubMedGoogle Scholar
  56. Okuda Y, Sakoda S, Bernard CC, Fujimura H, Saeki Y, Kishimoto T, Yanagihara T (1998) IL-6-deficient mice are resistant to the induction of experimental autoimmune encephalomyelitis provoked by myelin oligodendrocyte glycoprotein. Int Immunol 10:703–708PubMedCrossRefGoogle Scholar
  57. Okuda Y, Sakoda S, Fujimura H, Saeki Y, Kishimoto T, Yanagihara T (1999) IL-6 plays a crucial role in the induction phase of myelin oligodendrocyte glucoprotein 35–55 induced experimental autoimmune encephalomyelitis. J Neuroimmunol 101:188–196PubMedCrossRefGoogle Scholar
  58. Orlofsky A, Wu Y, Prystowsky MB (2000) Divergent regulation of the murine CC chemokine C10 by Th and Th cytokines. Cytokine 12:220–228PubMedCrossRefGoogle Scholar
  59. Pagenstecher A, Stalder AK, Kincaid CL, Shapiro SD, Campbell IL (1998) Differential expression of matrix metalloproteinase and tissue inhibitor of matrix metalloproteinase genes in the mouse central nervous system in normal and inflammatory states. Am J Pathol 152:729–741PubMedGoogle Scholar
  60. Paradisis PM, Campbell IL, Barnum SR (1998) Elevated complement C5a receptor expression on neurons and glia in astrocyte-targeted interleukin-3 transgenic mice. Glia 24:338–345PubMedCrossRefGoogle Scholar
  61. Pellegrini S, Schindler C (1993) Early events in signaling by interferons. Trends Biochem Sci 18:338–342PubMedCrossRefGoogle Scholar
  62. Penkowa M, Hidalgo J (2000) IL-6 deficiency leads to reduced metallothionein-I + II expression and increased oxidative stress in the brain stem after 6-aminonicotinamide treatment. Exp Neurol 163:72–84PubMedCrossRefGoogle Scholar
  63. Petitto JM, McNamara RK, Gendreau PL, Huang Z, Jackson AJ (1999) Impaired learning and memory and altered hippocampal neurodevelopment resulting from interleukin-2 gene deletion. J Neurosci Res 56:441–446PubMedCrossRefGoogle Scholar
  64. Pitt D, Werner P, Raine CS (2000) Glutamate excitotoxicity in a model of multiple sclerosis. Nat Med 6:67–70PubMedCrossRefGoogle Scholar
  65. Powell HC, Garrett RS, Muehlenbachs A, Brett FM, Campbell IL (1999a) Crystalloid inclusions in brain macrophages and hemopoietic tissue in GFAP-IL3 mice resemble inclusions identified in multiple sclerosis. Ultrastruct Pathol 23:285–297PubMedCrossRefGoogle Scholar
  66. Powell HC, Garrett RS, Brett FM, Chiang CS, Chen E, Masliah E, Campbell IL (1999b) Response of glia, mast cells and the blood brain barrier, in transgenic mice expressing interleukin-3 in astrocytes, an experimental model for CNS demyelination. Brain Pathol 9:219–235PubMedCrossRefGoogle Scholar
  67. Probert L, Akassoglou K, Pasparakis M, Kontogeorgos G, Kollias G (1995) Spontaneous inflammatory demyelinating disease in transgenic mice showing central nervous system-specific expression of tumor necrosis factor α. Proc Natl Acad Sci USA 92:11294–11298PubMedCrossRefGoogle Scholar
  68. Probert L, Eugster HP, Akassoglou K, Bauer J, Frei K, Lassmann H, Fontana A (2000) TNFR1 signaling is critical for the development of demyelination and the limitation of T-cell responses during immune-mediated CNS disease. Brain 123:2005–2019PubMedCrossRefGoogle Scholar
  69. Renno T, Taupin V, Bourbonniere L, Verge G, Tran E, De Simone R, Krakowski M, Rodriguez M, Peterson A, Owens T (1998) Interferon-γ in progression to chronic demyelination and neurological deficit following acute EAE. Mol Cell Neurosci 12:376–389PubMedCrossRefGoogle Scholar
  70. Scherbel U, Raghupathi R, Nakamura M, Saatman KE, Trojanowski JQ, Neugebauer E, Marino MW, Mcintosh TK (1999) Differential acute and chronic responses of tumor necrosis factor-deficient mice to experimental brain injury. Proc Natl Acad Sci USA 96:8721–8726PubMedCrossRefGoogle Scholar
  71. Schielke GP, Yang GY, Shivers BD, Betz AL (1998) Reduced ischemic brain injury in interleukin-1β converting enzyme-deficient mice. J Cereb Blood Flow Metab 18:180–185PubMedCrossRefGoogle Scholar
  72. Smith T, Groom A, Zhu B, Turski L (2000) Autoimmune encephalomyelitis ameliorated by AMPA antagonists. Nat Med 6:62–66PubMedCrossRefGoogle Scholar
  73. Steffensen SC, Campbell IL, Henriksen SJ (1994) Site-specific hippocampal pathophysiology due to cerebral overexpression of interleukin-6 in transgenic mice. Brain Res 652:149–153PubMedCrossRefGoogle Scholar
  74. Sugita Y, Zhao B, Shankar P, Dunbar CE, Doren S, Young HA, Schwartz JP (1999) CNS interleukin-3 (IL-3) expression and neurological syndrome in antisense-IL-3 transgenic mice. J Neuropathol Exp Neurol 58:480–488PubMedCrossRefGoogle Scholar
  75. Tanaka J, Ozaki H, Yasuda J, Horai R, Tagawa Y, Asano M, Saijo S, Imai M, Sekikawa K, Kopf M, Iwakura Y (2000) Lipopolysaccharide-induced HIV-1 expression in transgenic mice is mediated by tumor necrosis factor-α and interleukin-1, but not by interferon-γ nor interleukin-6. AIDS 14:1299–1307PubMedCrossRefGoogle Scholar
  76. Thull NM, Matar M, Quezada A, Munger WE, Batten TL, Muller S, Pericle F (2000) Antitumoral effect of a nonviral interleukin-2 gene therapy is enhanced by combination with 5-fluorouracil. Cancer Gene Ther 7:1165–1171PubMedCrossRefGoogle Scholar
  77. Tilg H, Dinarello CA, Mier JW (1997) IL-6 and APPs: anti-inflammatory and immunosuppressive mediators. Immunol Today 18:428–432PubMedCrossRefGoogle Scholar
  78. The Lenercept Multiple Sclerosis Study Group and The University of British Columbia MS/MRI Analysis Group (1999) TNF neutralization in MS: results of a randomized, placebo-controlled multicenter study. Neurology 53:457–465CrossRefGoogle Scholar
  79. Warzocha K, Bienvenu J, Coiffier B, Salles G (1995) Mechanisms of action of the tumor necrosis factor and lymphotoxin ligand-receptor system. Eur Cytokine Netw 6:83–96PubMedGoogle Scholar
  80. Webb AA, Muir GD (2000) The blood-brain barrier and its role in inflammation. J Vet Intern Med 14:399–411PubMedCrossRefGoogle Scholar
  81. Willenborg DO, Fordham S, Bernard CC, Cowden WB, Ramshaw IA (1996) IFN-γ plays a critical down-regulatory role in the induction and effector phase of myelin oligodendrocyte glycoprotein-induced autoimmune encephalomyelitis. J Immunol 157:3223–3227PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • U. L. M. Eisel
    • 1
  1. 1.Institute of Cell Biology and ImmunologyUniversity of StuttgartStuttgartGermany

Personalised recommendations