Advertisement

The Pineal Gland, Circadian Rhythms and Photoperiodism

  • J. Arendt
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 125)

Abstract

The pineal gland serves the same function in all species studied to date. Essentially it conveys information concerning light-dark cycles to body physiology for the organisation of seasonal and circadian rhythms. The pattern of secretion of the pineal hormone melatonin (N-acetyl-5-methoxytryptamine) forms the basis for this message, and a considerable amount of information has accumulated regarding the coding of photoperiodic information by melatonin. How the message is read at a cellular and molecular level remains largely unclear; however recently great strides have been made in identifying, localising and characterising melatonin receptors. The current development of melatonin agonists and antagonists will no doubt help to clarify the pharmacology of melatonin.

Keywords

Circadian Rhythm Pineal Gland Core Body Temperature Melatonin Receptor Melatonin Secretion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akerstedt T (1991) Sleepiness at work: effects of irregular work hours.In: Monk T (ed) Sleep, sleepiness and performance Wiley, New York, chap 5Google Scholar
  2. Akerstedt T, Froberg JE, Friberg W, Wetterberg L (1979) Melatonin excretion, body temperature and subjective arousal during 64 hours of sleep deprivation. Psychoneuroendocrinology 4: 219PubMedCrossRefGoogle Scholar
  3. Akerstedt T, Gillberg M, Wetterberg I (1982) The circadian covariation of fatigue and urinary melatonin. Biol Psychiatry 17: 547–554PubMedGoogle Scholar
  4. Aldhous ME, Arendt J (1991) Assessment of melatonin rhythms and the sleep wake cycle in blind subjects. In: Arendt J, Pevet P (eds) Proceedings of the European Pineal Society, Guildford, 1990. Adv Pineal Res 5: 307–311Google Scholar
  5. Anderson RA, Lincoln GA, Wu FC (1993) Melatonin potentiates testosterone-induced suppression of luteinising hormone secretion in normal men. Hum Reprod 8: 1819–1822PubMedGoogle Scholar
  6. Arendt J (1983) Biological rhythms (review). Int Med 3: 6–9Google Scholar
  7. Arendt J (1985) Mammalian pineal rhythms. Pineal Res Rev 3P: 161–213Google Scholar
  8. Arendt J (1986) Role of the pineal gland and melatonin in seasonal reproductive function in mammals. Oxford Rev Reprod Biol 8: 266–320Google Scholar
  9. Arendt J (1988) Melatonin. Clin Endocrinol (Oxf) 29: 205–229CrossRefGoogle Scholar
  10. Arendt J (1989) Melatonin — a new probe in psychiatric investigation. Br J Psychiatry 155: 585–590PubMedGoogle Scholar
  11. Arendt J (1994) Melatonin and the mammalian pineal gland. Chapman Hall, London Arendt J, Aldhous M (1988) Further evaluation of the treatment of jet-lag by melatonin: a double blind crossover study. Annu Rev Chronopharmacol 5: 53–55Google Scholar
  12. Arendt J, Broadway J (1986) Phase response of human melatonin rhythms to bright light in Antarctica. J Physiol (Loud) 377: 68Google Scholar
  13. Arendt J, Brown WB, Forbes JM, Marston A (1980) Effect of pinealectomy on immunoassayable melatonin in sheep. J Endocrinol 85: 1–2 PCrossRefGoogle Scholar
  14. Arendt J, Symons AM, Laud CA, Pryde SJ (1983) Melatonin can induce early onset of the breeding season in ewes. J Endocrinol 97: 395–400PubMedCrossRefGoogle Scholar
  15. Arendt J, Borbely AA, Franey C, Wright J (1984) The effect of chronic, small doses of melatonin given in the late afternoon on fatigue in man: a preliminary study. Neurosci Lett 45: 317–321PubMedCrossRefGoogle Scholar
  16. Arendt J, Bojkowski C, Folkard S, Franey C, Minors DS, Waterhouse JM, Weyer RA, Wildgruber C, Wright J (1985a) Some effects of melatonin and the control of its secretion in man. In: Evered D, Clark S (eds) Photoperiodism, melatonin and the pineal. Pitman, London, pp 266–283 (Ciba Foundation symposium 117 )Google Scholar
  17. Arendt J, Bojkowski C, Franey C, Wright J, Marks V (1985b) Immunoassay of 6hydroxymelatonin sulfate in human plasma and urine: abolition of the urinary 24-hour rhythm with atenolol. J Clin Endocrinol Metab 60: 1166–1173PubMedCrossRefGoogle Scholar
  18. Arendt J, Aldhous M, Marks V (1986) Alleviation of jet-lag by melatonin: preliminary results of controlled double-blind trial. Br Med J 292: 1170CrossRefGoogle Scholar
  19. Arendt J, Aldhous M, English J, Marks V, Arendt JH, Marks M, Folkard S (1987) Some effects of jet lag and their alleviation by melatonin. Ergonomics 30: 1379–1393CrossRefGoogle Scholar
  20. Arendt J, Aldhous M, Wright J (1988) Synchronisation of a disturbed sleep-wake cycle in a blind man by melatonin treatment. Lancet i: 772–773Google Scholar
  21. Armstrong SM (1989) Melatonin and circadian control in mammals. Experientia 45: 932–939PubMedCrossRefGoogle Scholar
  22. Armstrong SM, Redman J (1985) Melatonin administration: effects on rodent circadian rhythms. In: Evered D, Clark S (eds) Photoperiodism, melatonin and the pineal. Pitman, London, pp 188–207 (Ciba Foundation symposium 117 )Google Scholar
  23. Axelrod J (1974) The pineal gland: a neurochemical transducer. Science 184: 1341–1348PubMedCrossRefGoogle Scholar
  24. Bartness TJ, Powers B, Hastings MH, Bittman EL, Goldman BD (1993) The timed infusion paradigm for melatonin delivery: what has it taught us about the melatonin signal, its reception, and the photoperiodic control of seasonal responses. J Pineal Res 15: 161–190PubMedCrossRefGoogle Scholar
  25. Beck-Friis J, von Rosen D, Kjellman BF, Ljungen JG, Wetterberg L (1984) Melatonin in relation to body measures, sex, age, season and the use of drugs in patients with major affective disorders and healthy subjects. Psychoneuroendocrinology 9: 261–277PubMedCrossRefGoogle Scholar
  26. Beedham C, Smith J, Steele D, Wright J (1987) Chlorpromazine inhibition of melatonin metabolism by normal and induced rat liver microsomes. Eur J Drug Metab Pharmokinet 12 (4): 299–302CrossRefGoogle Scholar
  27. Berga SL, Mortola JF, Yen SSC (1988) Amplification of nocturnal melatonin secretion in women with functional hypothalamic amenorrhea. J Clin Endocrinol Metab, 66: 242–244PubMedCrossRefGoogle Scholar
  28. Bieck PR, Antonin K, Balon R, Oxenkrug G (1988) Effect of brofaromine and pargyline on human plasma melatonin concentrations. Proc Neuropsychopharmacol Biol Psychiat 12: 93–101CrossRefGoogle Scholar
  29. Bittman EL (1985) The role of rhythms in the response to melatonin. In: Evered D, Clark S (eds) Photoperiodism, melatonin and the pineal. Pitman, London, pp 149169 (Ciba Foundation symposium 117 )Google Scholar
  30. Bittman EL (1993) The sites and consequences of melatonin binding in mammals. Am Zool 33: 200–211Google Scholar
  31. Bojkowski C, Aldhous M, English J et al (1987a) Suppression of nocturnal plasma melatonin and 6-sulphatoxymelatonin by bright and dim light in man. Horm Metab Res 19: 437–440PubMedCrossRefGoogle Scholar
  32. Bojkowski C, Arendt J, Shih M, Markey SP (1987b) Assessment of melatonin secretion in man by measurement of its metabolite: 6-sulphatoxymelatonin. Clin Chem 19: 437–440Google Scholar
  33. Broadway J, Arendt J, Folkard S (1987) Bright light phase shifts the human melatonin rhythm during the Antarctic winter. Neurosci Lett 79: 185–189PubMedCrossRefGoogle Scholar
  34. Brown GM, Bar-Or A, Grossi D, Kashur S, Johannson E, Yie SM (1991) Urinary 6sulphatoxymelatonin, an index of pineal function in the rat. J Pineal Res 10: 141–147PubMedCrossRefGoogle Scholar
  35. Cagnacci A, Elliot JA, Yen SSC (1991) Amplification of pulsatile LH secretion by exogenous melatonin in women. J Clinical Endocrinol Metab 73: 210–212CrossRefGoogle Scholar
  36. Cagnacci A, Elliott JA, Yen SSC (1992) Melatonin: a major regulator of the circadian rhythm of core temperature in humans. J Clin Endocrinol Metab 75 (2): 447–452PubMedCrossRefGoogle Scholar
  37. Caignard D-H (1994) Structural activity relationships of melatonin agonists/antagonists. Adv Pineal Res 8: 349–356Google Scholar
  38. Cardinali DP, Vacas MI, Boyer EE (1979) Specific binding of melatonin in bovine brain. Endocrinology 105: 437–441PubMedCrossRefGoogle Scholar
  39. Carter DS, Goldman BD (1983) Antigonadal effects of timed melatonin infusion in pinealectomised male Djungarian hamsters ( Phodopus sungorus sungorus); duration is the critical parameter. Endocrinology 113: 1261–1267Google Scholar
  40. Cassone V (1990) Effects of melatonin on vertebrate circadian systems. Trends Neurosci 13: 457–463PubMedCrossRefGoogle Scholar
  41. Cassone V (1992) The pineal gland influences rat circadian activity rhythms in constant light. J Biol Rhythms 727–40Google Scholar
  42. Cassone VM, Chesworth MJ, Armstrong SM (1986) Entrainment of rat circadian rhythms by daily injections of melatonin depend upon the hypothalamic suprachiasmatic nuclei. Physiol Behav 36: 1111PubMedCrossRefGoogle Scholar
  43. Checkley SA, Palazidou E (1988) Melatonin and anti-depressant drugs: clinical pharmacology. In: Miles A, Philbrick DRS, Thompson C (eds) Melatonin: clinical perspectives. Oxford University Press, Oxford, pp 190–204Google Scholar
  44. Chemineau PE, Normandt JP, Ravault J, Thimonier (1986) Induction and persistence of pituitary and ovarian activity in the out-of-season lactating dairy goat after a treatment combining a skeleton photoperiod, melatonin and the male effect. J Reprod Fertil 78: 497–594Google Scholar
  45. Claustrat B, Brun J, David M, Sassolas G, Chazot G (1992) Melatonin and jet-lag: confirmatory result using a simplified protocol. Biol Psychiat 32: 8: 705–711PubMedCrossRefGoogle Scholar
  46. Collin JP (1971) Differentiation and regression of the cells of the sensory line in the epihysis cerebri. In: Wolstenholme GEW, Knight J (eds) The pineal gland. Churchill Livingstone, Edinburgh, pp 79–125Google Scholar
  47. Collin JP, Arendt J, Gern NA (1988) Le ‘troisieme oeil’. Recherche 203:1154–1165 Cowen PJ, Fraser S, Sammons R, Green AR (1983) Atenolol reduces plasma melatonin concentrations in man. Br J Clin Pharmacol 15: 579–581Google Scholar
  48. Cramer H, Rudolph J, Consbruch V (1974) On the effects of melatonin on sleep and behaviour in man. In: Costa E, Gessa GL, Sandler M (eds) Serotonin - new vistas: biochemistry and behavioural and clinical studies. Raven, New York, pp 187–191 (Advances in biochemical psychopharmacology, vol 11 )Google Scholar
  49. Czeisler CA, Allan JS, Strogatz JS, Ronda JM, Sandrez R, Rios CD, Freitag WO, Richardson GS, Kronauer RE (1986) Bright light resets the human circadian pace-maker independent of the timing of the sleep-wake cycle. Science 233: 667–671PubMedCrossRefGoogle Scholar
  50. Czeisler CA, Johnson PJ, Duffy JF et al (1990) Exposure to bright light and darkness to treat physiologic maladaptation to night-work. N Engl J Med 322: 1253–1259PubMedCrossRefGoogle Scholar
  51. Czeisler CA, Shanaghan TL, Klerman E, Martens, H, Brotman DJ, Emens JS, Klein T, Rizzo J (1995) Suppression of melatonin secretion in some blind patients by exposure to bright light. N Engl J Med 332: 6–11PubMedCrossRefGoogle Scholar
  52. Dahlitz M, Alvarez B,Vignau J,English J, Arendt J, Parkes JD (1991) Delayed sleep phase syndrome response to melatonin. Lancet 337: 1121–1124Google Scholar
  53. Das Gupta D, Riedel L, Frick JH, Attanasio A, Ranke MB (1983) Circulating melatonin in children: in relation to puberty, endocrine disorders, functional tests and racial origin. Neuroendocrinol Lett 5: 63–78Google Scholar
  54. Davies D, Vonhoff S, Garratt P, Sugden D (1995) Chicken brain and Xenopus laevis melatonin receptors discriminate between enantiomers of terahydrocarbazoles. Abstracts of the British Chronobiology Meeting, Jan 1995Google Scholar
  55. Davis FC, Mannion J (1988) Entrainment of hamster pup circadian rhythms by prenatal melatonin injections. Am J Physiol 255: R439 - R448PubMedGoogle Scholar
  56. De Reviers MM, Ravault JP, Tillet,Y Pelletier J (1989) Melatonin binding sites in the sheep pars tuberalis. Neurosci Lett 100: 89–93Google Scholar
  57. Deacon S, Arendt J (1994a) Posture influences melatonin concentrations in plasma and saliva in humans. Neurosci Lett 167: 191–194PubMedCrossRefGoogle Scholar
  58. Deacon SJ, Arendt J (1994b) Phase shifts in melatonin, 6-sulphatoxymelatonin and alertness rhythms after treatment with moderately bright light at night. Clin Endocrinol (Oxf) 40: 413–420CrossRefGoogle Scholar
  59. Deacon S, Arendt J (1995a) Melatonin-induced temperature suppression and its acute phase-shifting effects correlate in a dose dependent manner in humans. Brain Res 688: 77–85PubMedCrossRefGoogle Scholar
  60. Deacon S, Arendt J (1995b) Adapting to phase-shifts, I. An experimental model for jet lag and shift work. Physiol Behav (in press)Google Scholar
  61. Deacon S Arendt J (1995c) Adapting to phase-shifts, II. Effects of melatonin and conflicting light treatment. Physiol Behav (in press)Google Scholar
  62. Deacon S, English J, Arendt J (1994) Acute phase-shifting effects of melatonin asso- ciated with suppression of core body temperature. Neurosci Lett 1 (78): 32–34CrossRefGoogle Scholar
  63. Demisch K, Demisch L, Bodinik HJ, Nickelson,T, Althoff PH, Schoffling K, Rieth R (1986) Melatonin and cortisol increase after fluvoxamine. Br J Clin Pharmacol 22: 620–622CrossRefGoogle Scholar
  64. Deveson S, Arendt J, Forsyth I (1992a) Role of the pineal and melatonin rhythms on reproductive performance in female domestic ungulates. Rev Anim Reprod Sci 30: 113–134CrossRefGoogle Scholar
  65. Deveson S, Forsyth IA, Arendt J (1992b) Retardation of pubertal development by prenatal long days in goat kids born in autumn. J Reprod Fertil 95: 629–637PubMedCrossRefGoogle Scholar
  66. Deveson SL, Arendt J, Forsyth IA (1992) Induced out-of-season breeding in British Saanen dairy goats: use of artificial photoperiods and/or melatonin administration. Anim Reprod Sci 29: 1–15CrossRefGoogle Scholar
  67. Dollins AB, Zhdanova IV, Wurtman RJ, Lynch HJ, Deng MH (1994) Effect of inducing nocturnal serum melatonin concentrations in daytime on sleep, mood, body temperature, and performance Proc Natl Acad Sci USA 91: 1824–1828Google Scholar
  68. Dubocovich M (1988) Pharmacology and function of melatonin receptors. J FASEB 2: 2765–2773Google Scholar
  69. Dubocovich M (1985) Characterisation of a retinal melatonin receptor. J Pharmacol Exp Ther 234: 395–401PubMedGoogle Scholar
  70. Dubovich ML, Takahashi JS (1987) Use of 2-[1251]-iodomelatonin to characterize melatonin binding sites in chicken retina. Proc Natl Acad Sci USA 84: 3916–3920CrossRefGoogle Scholar
  71. Duncan MJ, Goldman BD (1984) Hormonal regulation of the annual pelage colour cycle in the Djungarian hamster, Phodopus sungorus. II. Role of prolactin. J Exp Zool 230: 97–103Google Scholar
  72. Eastwood MR, Peacock J (1976) Seasonal patterns of suicide, depression and electroconvulsive therapy. Br J Psychiatry 129: 472–475PubMedCrossRefGoogle Scholar
  73. Ebadi M, Govitrapong P (1986) Orphan transmitters and their receptor sites in the pineal gland. Pineal Res Rev 4: 1–54Google Scholar
  74. Ebisawa T, Karne S, Lerner M, Reppert SM (1994) Expression cloning of a high affinity melatonin receptor from Xenopus melanophores. Proc Natl Acad Sci USA 91: 6133–6137PubMedCrossRefGoogle Scholar
  75. Ebling FJP, Foster DL (1989) Pineal melatonin rhythms and the timing of puberty in mammals. Experientia 45: 946–955PubMedCrossRefGoogle Scholar
  76. Ebling F, Maywood E, Humby T, Hastings M (1992) Circadian and photoperiodic time measurement in male Syrian hamsters following lesions of the melatonin-binding sites of the paraventricular thalamus. J Biol Rhyth 73: 241–254CrossRefGoogle Scholar
  77. English J, Poulton, AL, Arendt J, Symons, AM (1986) A comparison of the efficiency of melatonin treatments in advancing oestrus in ewes. J Reprod Fertil 77: 321–327PubMedCrossRefGoogle Scholar
  78. English J, Middleton B, Arendt J, Wirz-Justice (1993) A rapid, direct measurement of melatonin in saliva using an iodinated tracer and solid phase second antibody. Ann Clin Biochem 30: 415–416Google Scholar
  79. Fevre-Montange M, van Cauter E, Refetoff S, Desir D, Tourniaire J, Copinschi G (1981) Effects of “Jet Lag” on hormonal patterns. II. Adaptation of melatonin circadian periodicity. J Clin Endocrinol Metab 52: 642–649Google Scholar
  80. Flaugh ME, Crowell TA, Clemens JA, Sawyer BD (1979) Synthesis and evaluation of the anti-ovulatory activity of a variety of melatonin analogues. J Med Chem 22: 63–69PubMedCrossRefGoogle Scholar
  81. Folkard S, Arendt J, Aldhous M, Kennett H (1990) Melatonin stabilises sleep onset time in a blind man without entrainment of cortisol or temperature rhythms. Neurosci Lett 113: 193–198PubMedCrossRefGoogle Scholar
  82. Folkard S, Arendt J, Clarke M (1993) Can melatonin improve shiftworkers tolerance of the night shift? Some preliminary findings. Chronobiol Internat 10: 315–320CrossRefGoogle Scholar
  83. Follett BK (1982) Physiology of photoperiodic time measurement. In: Aschoff J, Daan S, Groos G (eds) Vertebrate circadian systems. Springer, Berlin Heidelberg New York, pp 268–275CrossRefGoogle Scholar
  84. Foster RG, Provencio I, Hudson D, Fiske S, De Grip W, Menake M (1991) Circadian photoreception in the retinally degenerate mouse (rd/rd). J Comp Physiol 169: 3950CrossRefGoogle Scholar
  85. Franey C, Aldhous A, Burton S, Checkley S, Arendt J (1986) Acute treatment with desipramine stimulates melatonin and 6-sulphatoxymelatonin in man. Br J Clin Pharmacol 22: 73–79PubMedCrossRefGoogle Scholar
  86. Fraschini FO, Mess B, Martini L (1968) Pineal gland, melatonin and the control of luteinizing hormone secretion. Endocrinology 82: 919–924PubMedCrossRefGoogle Scholar
  87. Gebbie FE (1993) Control of seasonal breeding and coat development in the goat. Thesis, University of Surrey, Guildford, UKGoogle Scholar
  88. Gern WA, Kam CM (1983) Evolution of melatonin’s functions and effects. Pineal Res Rev 1: 49–91Google Scholar
  89. Glass JD, Lynch GR (1982) Evidence for a brain site of melatonin action in the white-footed mouse, Peromyscus leucopus. Neuroendocrinology 34: 1–6Google Scholar
  90. Goldman BD (1983) The physiology of melatonin in mammals. Pineal Res Rev 1 (145): 182Google Scholar
  91. Griffiths PA, Folkard S, Bojkowski C, English J, Arendt J (1986) Persistent 24th variations of urinary 6-hydroxymelatonin sulphate and cortisol in Antarctica. Experientia 42: 430–432PubMedCrossRefGoogle Scholar
  92. Guardiola-Lemaitre B (1994) Melatonin agonist/antagonist: from the receptor to therapeutic applications. In: Moller M, Pevet P (eds) Adv Pineal Res 8: 333–348Google Scholar
  93. Gwinner E (1989) Melatonin in the circadian system of birds: model of internal resonance. In: Hiroshige T, Honma K (eds) Circadian clocks and ecology. Hokkaido University Press, Sapporo, pp 127–153Google Scholar
  94. Haimov I, Laudon M, Zisapel N, Souroujon M, N of D, Shlitner A, Herer P, Tzischinsky O, Lavie P (1994) Sleep disorders and melatonin rhythms in elderly people. Br Med J 309: 167CrossRefGoogle Scholar
  95. Hanssen T, Heyden T, Sundberg I, Wetterberg L (1977) Effect of propanolol on serummelatonin. Lancet II: 309Google Scholar
  96. Hastings MH, Walker AP, Powers JB et al (1989) Differential effects of photoperiodic history on the responses of gonadotrophins and prolactin to intermediate day-lengths in the male Syrian hamster. J Biol Rhythms 4: 335–350PubMedCrossRefGoogle Scholar
  97. Hastings MH, Maywood ES, Ebling FJP (1991) Sites and mechanism of action of melatonin in the photoperiodic control of reproduction. Adv Pineal Res 5: 147–157Google Scholar
  98. Hastings MH, Mead SM, Vindlacheruvu RR, Ebling FJP, Maywoold ES, Grosse J (1992) Non-photic phase shifting of the circadian activity rhythm of Syrian hamsters: the relative potency of arousal and melatonin. Brain Res 591 (1): 20–26PubMedCrossRefGoogle Scholar
  99. Hazelrigg DG, Gonzalez-Brito A, Lawson W et al (1993) Prolonged exposure to melatonin leads to time dependent sensitization of adenylate cyclase and down regulates melatonin receptors in pars tuberalis cells from ovine pituitary. Endocrinology 132: 285–292CrossRefGoogle Scholar
  100. Herbert J (1981) The pineal gland and photoperiodic control of the ferret’s reproductive cycle. In: Follett BK, Follett DE (eds) Biological clocks in seasonal reproductive cycles. Wright, Bristol, pp 261–276Google Scholar
  101. Hoffman K (1981) The role of the pineal gland in the photoperiodic control of seasonal cycles in hamsters. In: Follett BK, Follett DE (eds) Biological clocks in seasonal reproductive cycles. Bristol Scientechnica Pitman Press, Bath, UK, pp 237–250Google Scholar
  102. Huether G, Poeggeler B, Reimer A, George A (1992) Effect of tryptophan administration on circulating melatonin levels in chicks and rats: evidence for stimulation of melatonin synthesis and release in the gastrointestinal tract. Life Sci 51 (2): 945943Google Scholar
  103. Iguchi H, Kato K, Ibayashi H (1982) Age dependent reduction in serum melatonin concentration in healthy human subjects. J Clin Endocrinol Metab 55: 27–29CrossRefGoogle Scholar
  104. Illnerova H, Vanecek J (1979) Response of rat pineal serotonin N-acetyltransferase to one minute light pulse at different night times. Brain Res 167: 431–434PubMedCrossRefGoogle Scholar
  105. Illnerova H, Vanecek J (1982) Complex control of the circadian rhythm in N-acetyltransferase activity in the rat pineal gland. In: Aschoff J, Daan S, Groos G (eds) Vertebrate circadian systems. Springer, Berlin Heidelberg New York, pp 285–296CrossRefGoogle Scholar
  106. Illnerova H, Zvolsky P, Vanecek J (1985) The circadian rhythm in plasma melatonin concentration of the urbanised man–the effect of summer and winter time. Brain Res 328: 186–189PubMedCrossRefGoogle Scholar
  107. Jan JE, Espezel H, Appleton RE (1994) The treatment of sleep disorders with melatonin. Dev Med Child Neurol 36: 97–107PubMedCrossRefGoogle Scholar
  108. Jewett M, Kronauer R, Czeisler C (1991) Light-induced suppression of endogenous circadian amplitude in humans. Nature 350: 59–62PubMedCrossRefGoogle Scholar
  109. Jones R, Garratt P, Sugden D (1995) Design and synthesis of melatonin agonists and antagonists derived from 2-phenyltryptamines. Abstracts of the British Chronobiology MeetingGoogle Scholar
  110. Kanematsu N, Mori Y, Hayashi S, Hoshino K (1989) Presence of a distinct 24-hour melatonin rhythm in the ventricular cerebrospinal fluid of the goat. J Pineal Res 7: 143–152PubMedCrossRefGoogle Scholar
  111. Kappers JA (1960) Innervation of the epiphysis cerebri in the albino rat. Anat Rec 136: 220–221Google Scholar
  112. Karsch FJ, Bittman EL, Foster DL et al (1984) Neuroendocrine basis of seasonal reproduction. Rec Prog Horm Res 40: 185–232PubMedGoogle Scholar
  113. Karsch FJ, Malpaux B, Wayne NL, Robinson JE (1988) Characteristics of the melatonin signal that provide the photoperiodic code from timing seasonal reproduction in the ewe. Reprod Nutr Dev 28: 459–472PubMedCrossRefGoogle Scholar
  114. Kauppila A, Kivela A, Pakarinen A, Vakkuri O (1987) Inverse seasonal relationship between melatonin and ovarian activity in humans in a region with a strong seasonal contrast in luminosity. J Clin Endocrinol Metab 65: 823–828PubMedCrossRefGoogle Scholar
  115. Kennaway DJ, Van Dorp CF (1991) Free running rhythms of melatonin, cortisol, electrolytes and sleep in humans in Antarctica. Am J Physiol 260: R1137–1144PubMedGoogle Scholar
  116. Kennaway DJ, Gilmore TA, Seamark RF (1982) Effect of melatonin feeding on serum prolactin and gonadotrophin levels and the onset of seasonal oestrous cyclicity in sheep. Endocrinology 110: 1766–1722PubMedCrossRefGoogle Scholar
  117. Kennaway DJ, Dunstan EA, Staples LD (1987) Photoperiodic control of the onset of breeding activity and fecundity in ewes. J Reprod Fertil [Suppl] 34: 187–199Google Scholar
  118. Kennaway DJ, Stamp GE, Goble FC (1992) Development of melatonin production in infants and the impact of prematurity. J Clin Endocrinol Metab 75: 367–369PubMedCrossRefGoogle Scholar
  119. Klein DC (1974) Circadian rhythms in indole metabolism in the rat pineal gland. In: Schmitt FO, Worden FG (eds) The neurosciences, third study program. MIT Press, Cambridge, Massachusetts, pp 509–516Google Scholar
  120. Klein DC (1974) Circadian rhythms in the pineal gland. In: Krieger DT (ed) Endocrine rhythms. Raven Press, New YorkGoogle Scholar
  121. Klein DC (1993) The mammalian melatonin rhythm-generating system. In: Wetterberg L (ed) Light and biological rhythms in man. Pergamon, Oxford, pp 55–72 (Wenner-Gren international series, vol 63 )Google Scholar
  122. Klein DC,Weller JL (1970) Indole metabolism in the pineal gland a circadian rhythm in N-acetyltransferase. Science 169: 1093–1095PubMedCrossRefGoogle Scholar
  123. Knutsson A (1989) Shift work and coronary heart disease. Scand J Soc Med 44: 1–36Google Scholar
  124. Korf H-W, Moller M (1984) The innervation of the mammalian pineal gland with special reference to central pinealopetal projections. Pineal Res Rev 2: 41–86Google Scholar
  125. Krause DN, Dubocovich ML 1990 ) Regulatory sites in the melatonin system of mammals. Trends Neurosci 13: 464–470PubMedCrossRefGoogle Scholar
  126. Laudon M, Zisapel N (1986) Characterization of central melatonin receptors using I125melatonin. FEBS Lett 197: 9–12PubMedCrossRefGoogle Scholar
  127. Laudon M, Yaron Z, Zisapel N (1988) N-(3,5-dinitrophenyl)-5-methoxytryptamine, a novel melatonin antagonist: effects on sexual maturation of the male and female rat. J Endocrinol 116: 43–53PubMedCrossRefGoogle Scholar
  128. Launay JM, Lemaitre B, Husson HP (1982) Melatonin synthesis by rabbit platelets. Life Sci 31: 1487–1494PubMedCrossRefGoogle Scholar
  129. Lewis DFV, Arendt J, English J (1990) Quantitative structure-activity relationships within a series of melatonin analogues and related indolealkylamines. J Pharmacol Exp Ther 252: 370–373PubMedGoogle Scholar
  130. Lewy AJ, Newsome DA (1983) Different types of melatonin circadian secretory rhythms in some blind subjects. J Clin Endocrinol Metab 56: 1103–1107PubMedCrossRefGoogle Scholar
  131. Lewy AJ, Wehr TA, Goodwin FK et al (1980) Light suppresses melatonin secretion in humans. Science 210: 1267–1269PubMedCrossRefGoogle Scholar
  132. Lewy AJ, Sack RL, Singer CM (1984) Assessment and treatment of chronobiologie disorders using plasma melatonin levels and bright light exposure, the clock-gate model and the phase response curve. Psychopharmacol Bull 20: 561–565PubMedGoogle Scholar
  133. Lewy AJ, Sack RL, Miller LS, Hoban TM (1987) Anti-depressant and circadian phase-shifting effects of light. Science 235: 352–354PubMedCrossRefGoogle Scholar
  134. Lewy AJ, Saeeduddin A, Latham Jackson J, Sack R (1992) Melatonin shifts human circadian rhythms according to a phase-response curve. Chronobiol Int 9 (5): 380–392PubMedCrossRefGoogle Scholar
  135. Lincoln G (1979) Photoperiodic control of seasonal breeding in the ram: participation of the cranial sympathetic nervous system. J Endocrinol 82: 135–147PubMedCrossRefGoogle Scholar
  136. Lincoln G, Maeda K (1992) Effects of placing micro-implants of melatonin in the mediobasal hypothalamus and preoptic area on the secretion of prolactin and f3-endorphin in rams. J Endocrinol 134 (3): 437–448PubMedCrossRefGoogle Scholar
  137. Lincoln GA (1992) Administration of melatonin into the mediobasal hypothalamus as a continuous or intermittent signal affects the secretion of follicle-stimulating hormone and prolactin in the ram. J Pineal Res 12: 135–144PubMedCrossRefGoogle Scholar
  138. Lincoln GA, Clarke IJ (1994) Photoperiodically-induced cycles in the secretion of prolactin in hypothalamo-pituitary disconnected rams: evidence for translation of the melatonin signal in the pituitary gland. J Neuroendocrinol 6: 251–260PubMedCrossRefGoogle Scholar
  139. Lincoln GA, Ebling FJP, Almeida OFX (1985) Generation of melatonin rhythms. In: Evered D, Clark S (eds) Photoperiodism, melatonin and the pineal. Pitman, London, pp 129–141 (CIBA Foundation symposium 117 )Google Scholar
  140. Martin JE, Klein DC (1975) Melatonin inhibition of neonatal pituitary response to luteinising hormone-releasing factor. Science 191: 301–302CrossRefGoogle Scholar
  141. Masson-Pevet M, Gauer F (1994) Differential daily and seasonal regulations of melatonin receptors in the supra chiasmatic nuclei and the pars tuberalis of mammals. Adv Pineal Res 8: 321–332Google Scholar
  142. Maurel D, Mas N, Roch G, Boissin J, Arendt J (1992) Diurnal variations of urinary 6sulphatoxymelatonin in male intact or ganglionectomised mink. J Pineal Res 13: 117–123PubMedCrossRefGoogle Scholar
  143. Maywood ES, Grosse J, Lindsay JO, Karp JD, Hastings M (1992) The effect of signal frequency on the gonadal response of male Syrian hamsters to programmed melatonin infusions. J Neuroendocrinol 4: 3–6CrossRefGoogle Scholar
  144. McArthur AJ, Gillette MU, Prosser RA (1991) Melatonin directly resets the rat suprachiasmatic circadian clock in vitro. Brain Res 565: 158–161PubMedCrossRefGoogle Scholar
  145. McIntyre IM, Norman TR, Burrows GD, Armstrong SM (1989) Human melatonin suppression by light is intensity dependent. J Pineal Res 6: 149PubMedCrossRefGoogle Scholar
  146. Menaker M, Hudson DJ, Takahashi JS (1981) Neural and endocrine components of circadian clocks in birds. In: Follett BK, Follett DE (eds) Biological clocks in seasonal reproductive cycles. Wright, Bristol, pp 171–183Google Scholar
  147. Miles LE, Raynal DM, Wilson MA (1977) Blind man living in normal society has circadian rhythms of 24.9 hours. Science 198: 421–423PubMedCrossRefGoogle Scholar
  148. Minors DS, Waterhouse JM (1981) Circadian rhythms and the human. Wright, Bristol, pp 143–148Google Scholar
  149. Minors DS, Waterhouse J (1992) Investigating the endogenous component of human circadian rhythms: a review of some simple alternatives to constant routines. Chronobiol Int 9 (1): 55–78PubMedCrossRefGoogle Scholar
  150. Minors DS, Waterhouse JM, Wirz-Justice A (1991) A human phase response curve to light. Neurosci Lett 133: 36–40PubMedCrossRefGoogle Scholar
  151. Moller M, Ravault JP, Cozzi B, Zang ET, Phansuwam-Pujito P, Larsen PJ, Mikkelsen JD (1991) The multineuronal input to the mammalian pineal gland. In: Foldes A, Reiter RJ (eds) Advances in pineal research, vol 6. Libbey, London, pp 3–12Google Scholar
  152. Moore RY, Klein DC (1974) Visual pathways and the central neural control of a circadian rhythm in pineal serotonin N-acetyltransferase. Brain Res 71: 17–33PubMedCrossRefGoogle Scholar
  153. Moore-Ede M (1993) The twenty four hour society. Addison Wesley, Massachusetts Moore-Ede MC, Czeisler CA, Richardson GS (1983) Circadian timekeeping in health and disease, part 1. Basic properties of circadian pacemakers. N Engl J Med 309: 469–476Google Scholar
  154. Morgan PJ, Williams LM (1989) Central melatonin receptors; implications for a mode of action. Experientia 45: 955–965PubMedCrossRefGoogle Scholar
  155. Morgan PJ, Williams LM, Davidson G et al (1989a) Melatonin receptors on ovine pars tuberalis: characterisation and autoradiographical localisation. J Neuroendocrinol 1: 1–4PubMedCrossRefGoogle Scholar
  156. Morgan PJ, Lawson W, Davidson G et al (1989b) Guanine nucleotides regulate the affinity of melatonin receptors on the ovine Pars tuberalis. Neuroendocrinology 50: 359–362PubMedCrossRefGoogle Scholar
  157. Morgan PJ, Davidson G, Lawson W, Barrett P (1990) Both pertussis toxin-sensitive and insensitive G-proteins link melatonin receptor to inhibition of adenylyl cyclase in the ovione pars tuberalis. J Neuroendocrinol 2: 773–776PubMedCrossRefGoogle Scholar
  158. Morgan PJ, Lawson W, Davidson G (1991) Interaction of forskolin and melatonin on cyclic AMP generation in pars tuberalis from ovine pituitary. J Neuroendocrinol 3: 497–501PubMedCrossRefGoogle Scholar
  159. Morgan PJ, Williams LM, Maclean A, Hazelrigg D (1995) Non G-protein coupled high affinity melatonin receptors are present in the sheep. Abstracts of the British Chronobiology Meeting, Jan 1995Google Scholar
  160. Mrosovsky N, Salmon PA (1987) A behavioural method for accelerating re-entrainment of rhythms to new light-dark cycles. Nature 330: 372–373PubMedCrossRefGoogle Scholar
  161. Nakazawa K, Marubayashi U, McCann SM (1991) Mediation of the short-loop feedback of luteinising hormone ( LH) on LH-releasing hormone release by melatonininduced inhibition of LH release from the pars tuberalis. Proc Natl Acad Sci USA 88: 7576–7579Google Scholar
  162. Namboodiri MA, Sugden D, Klein CC, Mefford IN (1983) 5-Hydroxytryptophan elevates serum melatonin. Science 221: 659–661Google Scholar
  163. Neuwelt EA, Lewy AJ (1983) Disappearance of plasma melatonin after removal of a neoplastic pineal gland N Engl J Med 19: 1132–1135Google Scholar
  164. Nowak R, McMillen C, Redman J, Short RV (1987) The correlation between serum and salivary melatonin concentrations and urinary 6-hydroxymelatonin sulphate: two non invasive techniques for monitoring human circadian rhythmicity. Clin Endocrinol (Oxf) 27: 445–452CrossRefGoogle Scholar
  165. O’Conor RAA (1992) A year in Antarctica: sleep and mood studies on Halley Base, 75S. In: Proceedings of the 8th Meeting of the European Society for Chronobiology, Leiden, The Netherlands, May 1992. J Interdisciplinary Cycle Res 23: 158–159Google Scholar
  166. Okudaira N, Kripke DF, Webster JB (1983) Naturalistic studies of human light exposure. Am J Physiol 245: R613–615PubMedGoogle Scholar
  167. Palazidou E, Franey C, Arendt J, Stahl S, Checkley S (1989) Evidence for a functional role of alpha-1-adrenoreceptors in the regulation of melatonin secretion in man. Psychoneuroendocrinology 14: 131–135PubMedCrossRefGoogle Scholar
  168. Palazidou E, Skene DJ, Arendt J, Everitt B, Checkley SA (1992) The acute and chronic effects of (+) and (-) oxaprotiline upon melatonin secretion in normal subjects. Psychol Med 22: 61–67PubMedCrossRefGoogle Scholar
  169. Palm L, Blennow G, Wetterberg L (1991) Correction of a non-24-hour sleep wake cycle by melatonin in a blind retarded boy. Ann Neurol 29: 336–339PubMedCrossRefGoogle Scholar
  170. Pang SF, Brown GM, Grota LJ et al (1977) Determination of N-acetylserotonin and melatonin activities in the pineal gland, retina, and Harderian gland, brain and serum of rats and chickens. Neuroendocrinology 23: 1–13PubMedCrossRefGoogle Scholar
  171. Parkes AS (1976) Patterns of sexuality and reproduction. Oxford University Press, OxfordGoogle Scholar
  172. Petrie K, Dawson AG, Thompson L, Brook R (1993) A double blind trial of melatonin as a treatment for jet lag in international cabin crew. Biol Psychiatry 33: 526–530PubMedCrossRefGoogle Scholar
  173. Petrie K, Conaglen JV, Thompson L et al (1989) Effect of melatonin on jet-lag after long haul flights. Br Med J 298: 705–707CrossRefGoogle Scholar
  174. Quay WB (1963) Circadian rhythm in rat pineal serotonin and its modifications by estrous cycle and photoperiod. Gen Comp Endocrinol 3: 473–479CrossRefGoogle Scholar
  175. Quay WB (1970) Precocious entrainment and associated characteristics of activity patterns following pinealectomy and reversal of photoperiod. Physiol Behav 5: 1281–1290PubMedCrossRefGoogle Scholar
  176. Raikhlin NT, Kvetnoy IM, Tokachev VN (1975) Melatonin may be synthesized in enterochromaffin cells. Nature 255: 344PubMedCrossRefGoogle Scholar
  177. Redman J, Armstrong S, Ng KT (1983) Free-running activity rhythms in the rat: entrainment by melatonin. Science 219: 1089–1091PubMedCrossRefGoogle Scholar
  178. Reiter RJ (1980) The pineal and its hormones in the control of reproduction in mammals. Endocr Rev 1: 109–131PubMedCrossRefGoogle Scholar
  179. Reiter RJ (1985) Action spectra, dose-response relationships and temporal aspects of light’s effects on the pineal gland. In: Wurtman RJ, Baum MJ, Potts JR Jr (eds) The medical and biological effects of light. Ann NY Acad Sci 453: 215–230Google Scholar
  180. Reppert SM, Weaver DR, Rivkees SA et al (1988) Putative melatonin receptors in a human biological clock. Science 242: 78–81PubMedCrossRefGoogle Scholar
  181. Reppert SM, Weaver DR, Ebisawa T (1994) Cloning and characterisation of a mammalian melatonin receptor that mediates reproductive and circadian responses. Neuron 13: 1177–1185PubMedCrossRefGoogle Scholar
  182. Roenneberg T, Aschoff J (1990) Annual rhythms in human reproduction: I. Biology, sociology or both? J Biol Rhythms 5: 195–216PubMedCrossRefGoogle Scholar
  183. Rollag MD, Niswender GD (1976) Radioimmunoassay of serum concentrations of melatonin in sheep exposed to different lighting regimens. Endocrinology 98: 482–489PubMedCrossRefGoogle Scholar
  184. Rollag MD, Morgan RJ, Niswender GD (1978) Route of melatonin secretion in sheep. Endocrinology 102: 1–8PubMedCrossRefGoogle Scholar
  185. Rosa RR, Bonnet MH, Bootzin RR, Eastman CI, Monk T, Penn PE, Tepas DI, Walsh JK (1990) Intervention factors for promoting adjustment to nightwork and shift-work. Occup Med State Art Rev 5: 391–415Google Scholar
  186. Rosenthal NE, Sack DA, Gillin JC et al (1984) Seasonal affective disorder. A description of the syndrome and preliminary findings with light therapy. Arch Gen Psychiatry 41: 72–79PubMedCrossRefGoogle Scholar
  187. Ross JK, Arendt J, Home J, Haston W (1995) Night-shift work during Antarctic winter: sleep characteristics and adaptation with bright light treatment. Physiol Behav 57: 1169–1174PubMedCrossRefGoogle Scholar
  188. Sack RL, Lewy AJ, Blood ML, Stevenson J, Keith LD (1991) Melatonin administration to blind people: phase advances and entrainment. J Biol Rhythms 6: 249–261PubMedCrossRefGoogle Scholar
  189. Sack RL, Blood ML, Lewy AJ (1994) Melatonin administration promotes circadian adaptation to shift work. Sleep Res 23: 509Google Scholar
  190. Samel A, Wegman HM, Vejvoda M, Maas H (1991) Influence of melatonin treatment on human circadian rhythmicity before and after a simulated 9 hour time shift. J Biol Rhythms 6: 235–248PubMedCrossRefGoogle Scholar
  191. Sarrafzadeh A, Wirz-Justice A, Arendt J, English J (1990). Melatonin stabilises sleep onset in a blind man. In: Horne JA (ed) Sleep ‘80. Pontenagel, Dortmund, pp 51–54Google Scholar
  192. Skene DJ, Masson-Pevet M, Pevet P (1993) Seasonal changes in melatonin binding sites in the pars tuberalis of male European hamsters and the effect of testosterone manipulation. Endocrinology 132: 1682–1686PubMedCrossRefGoogle Scholar
  193. Skene DJ, Bojkowski CJ, Arendt J (1994) Comparison of the effects of acute fluvoxamine and desipramine administration on melatonin and cortisol production in humans. Br J Clin Pharmacol 37: 181–186PubMedCrossRefGoogle Scholar
  194. Smith JA, O’Hara J, Schiff AA (1981) Altered diurnal serum melatonin rhythm in a blind man. Lancet ií: 933Google Scholar
  195. Smith L, Folkard S, Poole CJM (1994) Increased injuries on night-shift. Lancet 344: 1137–1139PubMedCrossRefGoogle Scholar
  196. Stankov B, Fraschini F (1994) Distribution of the high affinity melatonin-binding sites in the vertebrate brain. Adv Pineal Res 8: 295–307Google Scholar
  197. Stehle JH, Foulkes NS, Molina CA, Simonneaux V, Pevet P, Sassone-Corsi P (1993) Adrenergic signals direct rhythmic expression of transcriptional repressor CREM in the pineal gland. Nature 365: 314–320PubMedCrossRefGoogle Scholar
  198. Steinlechner S (1991) In search of a physiological role for retinal melatonin. Adv Pineal Res [Suppl] 5: 123–128Google Scholar
  199. Strassman RJ, Qualls CR, Lisansky EJ, Peake GT (1991) Elevated rectal temperature produced by all night bright light is reversed by melatonin infusion in man. J Appl Physiol 71: 2178–2181PubMedGoogle Scholar
  200. Sugden D, Chong NWS (1991) Pharmacological identity of 2-(1251)iodomelatonin binding sites in chicken brain and sheep pars tuberalis. Brain Res 539: 151–154PubMedCrossRefGoogle Scholar
  201. Sugden D, Weller JL, Klein DC, Kirk KL, Creveling CR (1984) a-Adrenergic potentiation of 13-adrenergic stimulation of rat pineal N-acetyltransferase: studies using citazoline and fluorine analogs of norepinephrine. Biochem Pharmacol 33: 3947–3950Google Scholar
  202. Sugden D, Chong N, Lewis D (1995) Structural requirements at the melatonin receptor. Br J Pharmacol 114: 618–623PubMedCrossRefGoogle Scholar
  203. Tamarkin K, Baird CJ, Almeida OFX (1985) Melatonin: a coordinating signal for mammalian reproduction. Science 227: 714–720PubMedCrossRefGoogle Scholar
  204. Terman M, Boulos Z, Campbell SS, Djik D-J, Eastman C, Lewy AJ (1995) Light treatment for sleep disorders. Joint Task Force Report. J Biol Rhythms 10: 105–112Google Scholar
  205. Tessonneaud A (1994) Thesis, INRA, Centre de Recherche de Tours, FranceGoogle Scholar
  206. Touitou Y, Haus E (eds) (1992) Biologic rhythms in clinical and laboratory medicine. Springer, Berlin Heidelberg New YorkGoogle Scholar
  207. Tzischinsky O, Skene D, Epstein R, Lavie P (1991) Circadian rhythms in 6-sulphatoxymelatonin and nocturnal sleep in blind children. Chronobiol Int 8: 168–175PubMedCrossRefGoogle Scholar
  208. Tzischinsky O, Lavie P, Pal I (1992a) Time-dependent effects of 5 mg melatonin on the sleep propensity function. 11th European congress on sleep research, July, Helsinki, Finland. J Sleep Res 1 [Suppl 1]: 234Google Scholar
  209. Tzischinsky O, Pal I, Epstein R, Dagan Y, Lavie P (1992b) The importance of timing in melatonin administration in a blind man. J Pineal Res 12: 105–108PubMedCrossRefGoogle Scholar
  210. Underwood H (1977) Circadian organisation in lizards: the role of the pineal organ. Science 195: 587–589PubMedCrossRefGoogle Scholar
  211. Underwood H, Goldman BD (1987) Vertebrate circadian and photoperiodic systems: role of the pineal gland and melatonin. J Biol Rhythms 2: 279–315PubMedCrossRefGoogle Scholar
  212. Vakkuri O, Leppaluoto J, Vuolteenaho O (1985a) Development and validation of a melatonin radioimmunoassay using radioiodinated melatonin as tracer. Acta Endocrinol (Copenh) 106: 152–157Google Scholar
  213. Vakkuri O, Leppaluoto J, Kauppila A (1985b) Oral administration and distribution of melatonin in human serum, saliva and urine. Life Sci 37: 489–495PubMedCrossRefGoogle Scholar
  214. Vanecek J, Pavlik A, Illnerova H (1987) Hypothalamic melatonin receptor sites revealed by autoradiography. Brain Res 453: 359–362Google Scholar
  215. Vaughan GM (1984) Melatonin in humans. Pineal Res Rev 2: 141–201Google Scholar
  216. Vaughan GM, Reiter RJ (1987) The Syrian hamster pineal gland responds to isoproterenol in vivo at night. Endocrinology 120: 1682–1684PubMedCrossRefGoogle Scholar
  217. Vollrath L, Semm P, Gammel G (1981) Sleep induction by intranasal application of melatonin. Adv Biosci 29: 327–329Google Scholar
  218. Voordow BCG, Euser R, Verdonk RER, Alberda BT, DeJong FH, Drogendijk AC, Fauser BCJM, Cohen M (1992) Melatonin and melatonin-progestin combinations alter pituitary-ovarian function in women and can inhibit ovulation. J Clin Endocrinol Metab 74: 108–117CrossRefGoogle Scholar
  219. Waldhauser F, Steger H (1986) Changes in melatonin secretion with age and pubescence. J Neural Transm [Suppl] 21: 183–198Google Scholar
  220. Waldhauser F, Steger H, Vorkapic P (1987) Melatonin secretion in man and the influence of exogenous melatonin on some physiological and behavioural variables. Adv Pineal Res 2: 207–223Google Scholar
  221. Waldhauser F, Boepple P, Schemper M, Crowley WF (1991) Serum melatonin in central precocious puberty is lower than in age matched pre-pubertal children. J Clin Endocrinol Metab 73: 793–796PubMedCrossRefGoogle Scholar
  222. Weaver DR, Reppert SM (1986) Maternal melatonin communicates daylength to the fetus in Djungarian hamsters. Endocrinology 119: 2861–2863PubMedCrossRefGoogle Scholar
  223. Weaver DR, Reppert SM (1990) Melatonin receptors are present in the ferret pars tuberalis and pars distalis, but not the brain. Endocrinology 127: 2607–2609PubMedCrossRefGoogle Scholar
  224. Weaver DR, Stehle JH, Stopa EG et al (1993) Melatonin receptors in human hypothalamus and pituitary: implications for circadian and reproductive responses tomelatonin. J Clin Endocrinol Metab 76: 295–230PubMedCrossRefGoogle Scholar
  225. Webb S, Puig-Domingo M (1995) Melatonin in health and disease. Clin Endocrinol (Oxf) 42: 221–234CrossRefGoogle Scholar
  226. Wehr TA (1991) The durations of human melatonin secretion and sleep respond to changes in daylength (photoperiod). J Clin Endocrinol Metab 73: 1276–1280PubMedCrossRefGoogle Scholar
  227. Wehr TA, Jacobsen FM, Sack DA, Arendt J, Tamarkin L, Rosenthal NE (1986) The efficacy of phototherapy in seasonal affective disorder appears not to depend on its timing or its effect on melatonin secretion. Arch Gen Psychiatry 43: 870–875PubMedCrossRefGoogle Scholar
  228. Weyer RA (1979) The circadian system of man: results of experiments under temporal isolation. Springer, Berlin Heidelberg New YorkGoogle Scholar
  229. Weyer RA (1989) Light effects on human circadian rhythms: a review of recent Andechs experiments. J Biol Rhthms 4: 161–186Google Scholar
  230. Weyer RA, Polasek J, Wildgruber CM (1983) Bright light affects human circadian rhythms. Pflugers Arch 396: 85–87CrossRefGoogle Scholar
  231. White BH, Sekura RD, Rollag MD (1987) Pertussis toxin blocks melatonin-induced aggregation in Xenopus dermal melanophores. J Comp Physiol [B] 157: 153–159CrossRefGoogle Scholar
  232. Wilkinson M, Arendt J, Bradtke J, de Ziegler D (1977) Determinatin of dark-inducedGoogle Scholar
  233. elevation of pineal N-acetyl-transferase with simultaneous radioimmunoassay of melatonin in pineal, serum and pituitary of the male rat. J Endocrinol 72:243–244Google Scholar
  234. Williams LM, Martinoli MG, Titchener LT, Pelletier G (1991) The ontogeny of central melatonin binding sites in the rat. Endocrinology 128: 2083–2090PubMedCrossRefGoogle Scholar
  235. Winton F, Checkley SA, Corn T, Huson LW, Franey C, Arendt J (1989) Effects of light treatment upon mood and melatonin in seasonal affective disorder. Psychol Med 15: 19–25Google Scholar
  236. Woodfill CJI, Robinson JE, Malpaux BM, Karsch FJ (1991) Synchronisation of the circannual reproductive rhythm of the ewe by discrete photoperiodic signals. Biol Reprod 45: 110–121PubMedCrossRefGoogle Scholar
  237. Woodfill CJI, Wayne N, Moenter SM, Karsch F (1994) Photoperiodic synchronisation of a circannual reproductive rhythm in sheep: identification of season-specific time cues. Biol Reprod 50: 965–976PubMedCrossRefGoogle Scholar
  238. Wright J, Aldhous M, Franey C, English J, Arendt J (1986) The effects of exogenous melatonin on endocrine function in man. Clin Endocrinol (Oxf) 24: 375–382CrossRefGoogle Scholar
  239. Yous S, Antrieux J, Howell HE et al (1992) Novel napthalenic ligands with a high affinity for the melatonin receptor. J Med Chem 35: 1484–1486PubMedCrossRefGoogle Scholar
  240. Yuwiler A (1983) Vasoactive intestinal peptide stimulation of pineal serotonin-N- acetyltransferase activity: general characteristics. J Neurochem 41: 141–156Google Scholar
  241. Zaidan R, Geoffriau M, Brun J, Taillard J, Bureau C, Chazot G, Claustrat B (1994) Melatonin is able to influence its secretion in humans: description of a phase-response curve. Neuroendocrinology 60: 105–112PubMedCrossRefGoogle Scholar
  242. Zatz M (1978) Sensitivity and cyclic nucleotides in the rat pineal gland. J Neural Transm [Suppl 13]: 97–114Google Scholar
  243. Zisapel N, Oaknin S, Anis Y (1991) Melatonin receptors in discrete areas of the rat and Syrian hamster brain: modulation by melatonin, pinealectomy, testosterone and the photoperiod. Adv Pineal Res 5: 175–181Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • J. Arendt

There are no affiliations available

Personalised recommendations