Advertisement

The role of nonlinearity in modelling energy transfer in Scheibe aggregates

  • O. Bang
  • P. L. Christiansen
  • K. Ø. Rasmussen
  • Y. B. Gaididei
Part of the Centre de Physique des Houches book series (LHWINTER, volume 2)

Abstract

Exciton motion in molecular systems is an important field of physics, and has been undergoing active theoretical, and experimental investigations. For a general review on excitons see e.g. Davydov [1]. The field derives its importance from being a part of the general area of energy transfer, and its consequent connection with a variety of disciplines, even outside physics, such as photosynthesis in biology [2]. Here we consider the highly efficient energy transfer observed in a special kind of ordered molecular system, known as Scheibe aggregates [3], and its possible explanation through nonlinear dynamical effects inherent to the system.

Keywords

Solitary Wave Coherence Time Efficient Energy Transfer Antenna Complex Collapse Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A.S. Davydov, Theory of molecular excitons, Plenum Press (1971) 1.Google Scholar
  2. [2]
    R.S. Knox in Primary processes of photosynthesis, ed. J. Barber, North-Holland (1977) 55.Google Scholar
  3. [3]
    G. Scheibe, Angew. Chem. 49 (1936) 563.Google Scholar
  4. [4]
    G. Feher, M.Y. Okamura in The photosynthetic bacteria, eds. R.K. Clayton and W.F. Sirtronm, Plenum Press (1978) 349.Google Scholar
  5. [5]
    I. Langmuir, J. Am. Chem. Soc. 39 (1917) 1848.CrossRefGoogle Scholar
  6. [6]
    K.B. Blodgett, J. Am. Chem. Soc. 57 (1935) 1007.CrossRefGoogle Scholar
  7. [7]
    M. Fujihira in Photochemical processes in organized molecular systems, ed. K. Honda, Elsevier Science Publishers B.V. (1991).Google Scholar
  8. [8]
    A.S. Davydov, J. Theor. Biol. 38 (1973) 559.CrossRefGoogle Scholar
  9. [9]
    M. Peyrard, A.R. Bishop, Phys. Rev. Lett. 62 (1989) 2755.ADSCrossRefGoogle Scholar
  10. T. Dauxois, M. Peyrard, C.R. Willis, Physica D 57 (1992) 267.MathSciNetADSzbMATHCrossRefGoogle Scholar
  11. V. Muto, P.S. Lomdahl, and P.L. Christiansen, Phys. Rev. A 42 (1990) 7452.ADSCrossRefGoogle Scholar
  12. V. Muto, J. Biol. Phys. 19 (1993) 133.CrossRefGoogle Scholar
  13. [10]
    V.E. Zakharov, Zh. Eksp. Teor. Fiz. 62 (1972) 1745 [Sov. Phys. JETP 35 (1972) 908].Google Scholar
  14. [11]
    Y.R. Shen, The principles of nonlinear optics, J. Wiley & Sons Inc. (1984) Chap. 17.Google Scholar
  15. [12]
    O. Bang, P.L. Christiansen, Y.B. Gaididei, F. If, K.Ø. Rasmussen, Phys. Rev. E 49 (1994) 4627.ADSCrossRefGoogle Scholar
  16. [13]
    A. Pockels, Letter to Lord Rayleigh, Nature 43 (1891) 437.Google Scholar
  17. [14]
    L.M. Blinov, Russ. Chem. Rev. 52 (1983) 713.ADSCrossRefGoogle Scholar
  18. [15]
    Langmuir-Blodgett Films, ed. G.G. Roberts, Plenum London (1987).Google Scholar
  19. [16]
    H. Bücher, H. Kuhn, Chem. Phys. Lett. 6 (1970) 183.ADSCrossRefGoogle Scholar
  20. [17]
    D. Möbius, H. Kuhn, Israel J. of Chem. 18 (1979) 375.Google Scholar
  21. [18]
    D. Möbius, H. Kuhn, J. Appl. Phys. 64 (1988) 5138.ADSCrossRefGoogle Scholar
  22. [19]
    T.L. Penner, Thin Solid Films 160 (1988) 241.ADSCrossRefGoogle Scholar
  23. [20]
    T. Sato, Y. Yonezawa, H. Kurokawa, M. Kurahashi, Y. Wada, T. Tanaka, Thin Solid Films 210/211 (1992) 172.ADSCrossRefGoogle Scholar
  24. [21]
    H.P. Dorn, A. Müller, Appl. Phys. B 43 (1987) 167.ADSCrossRefGoogle Scholar
  25. [22]
    S. De Boer, D.A. Wiersma, Chem. Phys. Lett. 165 (1990) 45.Google Scholar
  26. [23]
    T. Itoh, T. Ikehara, Y. Iwabuchi, J. Lumin. 45 (1990) 29.CrossRefGoogle Scholar
  27. [24]
    J. Feldman, G. Peter, E.O. Göbel, P. Dawson, K. Moore, C. Foxon, R.J. Elliott, Phys. Rev. Lett. 59 (1987) 2337.ADSCrossRefGoogle Scholar
  28. [25]
    R.H. Tredgold, Rep. Prog. Phys. 50 (1987) 1609.ADSCrossRefGoogle Scholar
  29. [26]
    M. Fujihira, H. Yamada, Thin Solid Films 160 (1985) 125.CrossRefGoogle Scholar
  30. [27]
    P.B. Gilman, Phot. Sci. Eng. 18 (1974) 418.Google Scholar
  31. [28]
    N.A. Campbell, Biology 3rd ed., Benjamin/Cummings Publ. Company (1993) Chap. 8 and 10. Govindjee, R. Govindjee, Scientific American 231 (1974) 68.Google Scholar
  32. [29]
    W. Maentele, Speech at the Les Houches conference.Google Scholar
  33. [30]
    P.O.J. Scherer, S.F. Fischer in Time-resolved vibrational spectroscopy, eds. A. Laubereau and M. Stockburger, Springer (1985) 297.CrossRefGoogle Scholar
  34. [31]
    J. Grad, G. Hernandez, S. Mukamel, Phys. Rev. A 37 (1988) 3835ADSCrossRefGoogle Scholar
  35. F.C. Spano, J.R. Kuklinski, S. Mukamel, Phys. Rev. Lett. 65 (1990) 211.ADSCrossRefGoogle Scholar
  36. [32]
    E.A. Bartnik, K.J. Blinowska, Phys. Lett. A 134 448.Google Scholar
  37. E.A. Bartnik, J.A. Tuszynski, Phys. Rev. E 48 (1993) 1516.ADSCrossRefGoogle Scholar
  38. [33]
    G.C. Huth, F. Gutmann, G. Vitiello, Phys. Lett. A 140 (1989) 339.ADSCrossRefGoogle Scholar
  39. [34]
    V.E. Zakharov, A.B. Shabat, Zh. Eksp. Fiz. 61 (1971) 118 [Sov. Phys. JETP 34 (1972) 62].Google Scholar
  40. [35]
    P.S. Lomdahl, O.H. Olsen, P.L. Christiansen, Phys. Lett. A 78 (1980) 125.MathSciNetADSCrossRefGoogle Scholar
  41. [36]
    P.L. Christiansen, S. Pagano, G. Vitiello, Phys. Lett. A 154 (1991) 381. P.L. Christiansen, O. Bang, S. Pagano, G. Vitiello, Nanobiology 1 (1992) 229.ADSCrossRefGoogle Scholar
  42. [37]
    J.J. Rasmussen, K. Rypdal, Physica Scripta 33 (1986) 481.MathSciNetADSzbMATHCrossRefGoogle Scholar
  43. [38]
    N.W. Ashcroft, N.D. Mermin, Solid state physics, CBS Publ. Asia LTD (1976) Chap. 22–23.Google Scholar
  44. [39]
    A.S. Davydov, Quantum mechanics (2nd ed.), Pergamon Press (1965) Chap. 20.Google Scholar
  45. [40]
    R. Kubo, Rep. Prog. Phys. 29 (1966) 255.ADSCrossRefGoogle Scholar
  46. [41]
    P.S. Lomdahl, W.C. Kerr, Phys. Rev. Lett. 55 (1985) 1235.ADSCrossRefGoogle Scholar
  47. [42]
    J.C. Eilbeck, P.S. Lomdahl, A.C. Scott, Physica D 16 (1985) 318.MathSciNetADSzbMATHCrossRefGoogle Scholar
  48. [43]
    J.C. Eilbeck, P.S. Lomdahl, A.C. Scott, Phys. Rev. B 30 (1984) 4703.ADSCrossRefGoogle Scholar
  49. [44]
    A.C. Scott, J.C. Eilbeck, Chem. Phys. Lett. 132 (1986) 23.ADSCrossRefGoogle Scholar
  50. [45]
    J.H. Jensen, P.L. Christiansen, O. Skovgaard, O.F. Nielsen, I.J. Bigio, Phys. Lett. A 117 (1986) 123.ADSCrossRefGoogle Scholar
  51. [46]
    V. Czikkely, H.D. Försterling, H. Kuhn, Chem. Phys. Lett. 6 (1970) 297.CrossRefGoogle Scholar
  52. [47]
    A.C. Scott, Phys. Rep. 217 (1992) 1.ADSCrossRefGoogle Scholar
  53. [48]
    F. If, M.P. Sørensen, and P.L Christiansen, Phys. Rev. B 32 (1985) 1512.ADSCrossRefGoogle Scholar
  54. [49]
    Ø. Bang, P.L. Christiansen, Y.B. Gaididei, F. If, K.Ø. Rasmussen (unpublished).Google Scholar
  55. [50]
    K. Rypdal, J.J. Rasmussen, K. Thomsen, >Physica D 16 (1985) 339.MathSciNetADSzbMATHCrossRefGoogle Scholar
  56. [51]
    M. Desaix, D. Anderson, M. Lisak, J. Opt. Soc. Am. 8 (1991) 2082.ADSCrossRefGoogle Scholar
  57. [52]
    D. Anderson, M. Bonnedal, M.Lisak, Phys. Fluids 22 (1979) 1838.MathSciNetADSCrossRefGoogle Scholar
  58. [53]
    K.Ø. Rasmussen, Y.B. Gaididei, O. Bang, P.L. Christensen, (unpublished).Google Scholar
  59. [54]
    P.L. Christiansen, K.Ø. Rasmussen, O. Bang, Y.B. Gaididei, (unpublished).Google Scholar
  60. [55]
    G.P. Hasegawa, Plasma Instabilities and Nonlinear Effects, Physics and Chemistry in Space 8 Springer Verlag (1975).CrossRefGoogle Scholar
  61. [56]
    G.P. Agrawal, Nonlinear fiber optics, Academic Press (1989) Chap. 1.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • O. Bang
    • 1
  • P. L. Christiansen
    • 2
  • K. Ø. Rasmussen
    • 2
  • Y. B. Gaididei
    • 3
  1. 1.Laboratoire de PhysiqueENS LyonLyon cedex 07France
  2. 2.IMM, T. Univ. of DenmarkLyngbyDenmark
  3. 3.ITPKiev 143Ukraine

Personalised recommendations