Advertisement

Longitudinal Phase Space Manipulation

  • Michiko G. Minty
  • Frank Zimmermann
Open Access
Chapter
Part of the Particle Acceleration and Detection book series (PARTICLE)

Abstract

In this chapter we describe various techniques used to control the longitudinal properties of particle beams We concentrate on the manipulation of the second moments of the longitudinal distribution; that is, on the bunch length and energy spread. As will be shown, the bunch length can be varied using accelerating cavities to compress, coalesce, split, and lengthen stored bunches. The energy spread of the beam can also be adjusted (usually to be a minimum) by proper phasing of the rf, by invoking cancellations between the applied and beam-induced rf, and by more sophisticated techniques for the case of long bunch trains. A practical application of the use of rf systems to affect the beam’s transverse emittance is presented lastly.

Keywords

Energy Spread Bunch Length Beam Loading Accelerate Structure Advance Light Source 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    R. Erickson (ed.): The SLC Design Handbook, Stanford Linear Accelerator Center (1984)Google Scholar
  2. 2.
    The NLC Study Group: Zeroth-Order Design Report for the Next Linear Collider. LBNL-PUB-5424, SLAC Report 474, UCRL-ID-124161 (1996)Google Scholar
  3. 3.
    N. Akasaka, M. Akemoto, S. Anami et al.: JLC Design Study. KEK-REPORT97–1 (1997)Google Scholar
  4. 4.
    D.A. Edwards (ed.): ‘TESLA Test Facility Linac — Design Report’, DESY Report: TESLA 95–01 (1995)Google Scholar
  5. 5.
    C. Pellegrini, J. Rosenzweig, H.D. Nuhn et al.: ‘A 2-nm to 4-nm High Power FEL on the SLAC Linac’, Nucl. Instr. Meth. A331, 223–227 (1993)CrossRefADSGoogle Scholar
  6. 6.
    P. Emma, T. Raubenheimer, F. Zimmermann: A Bunch Compressor for the Next Linear Collider, In: Proc. IEEE Part. Acc. Conf., Dallas, Texas, 1995 704–706. SLAC-PUB-6787 (1995)Google Scholar
  7. 7.
    M.G. Minty et al.: Operation and Performance of Bunch Precompression for Increased Current Transmission at the SLC, In: Proc. IEEE Part. Acc. Conf., Vancouverr, Canada, 1997. SLAC-PUB-7477 (1997)Google Scholar
  8. 8.
    W. Kriens: Petra Bunch Rotation. DESY-M-97–10N (1997)Google Scholar
  9. 9.
    G. Wiesenfeldt: Untersuchungen zur longitudinalen Strahlanpassung beim Protonentransfer von PETRA nach HERA. Diplomarbeit, Universitaet Hamburg (1995)Google Scholar
  10. 10.
    I. Kourbanis, G.P. Jackson, X. Lu: Performance and Comparison of the Different Coalescing Schemes Used in the Fermilab Main Ring. In: Proc. IEEE Part. Acc. Conf., Washington, DC, 1993, pp. 3799–3801Google Scholar
  11. 11.
    P.S. Martin, D.W. Wildman: Bunch Coalescing and Bunch Rotation in the Fermilab Main Ring: Operational Experience and Comparison with Simulations. In: Proc. EPAC88, Rome, Italy, 1988 (IOP, 1989 ) p. 785Google Scholar
  12. 12.
    V. Bharadwaj: private communication (1999)Google Scholar
  13. 13.
    J. Dey, I. Kourbanis, D. Wildman: Improvements in Bunch Coalescing in the Fermilab Main Ring. In: Proc. Pac95, Dallas, TX, 1995 ( IEEE, Piscataway 1995 ) p. 3312Google Scholar
  14. 14.
    M. Benedikt, A. Blas, J. Borburgh et al.: ‘The PS Complex Produces the Nominal LHC Beam’. In: Proc. EPAC, Vienna, Austria, 2000 ( European Phys. Soc., Geneva 2000 )Google Scholar
  15. 15.
    R. Garoby: Status of the Nominal Proton Beam for LHC in the PS. In: Proc. of the Workshop on LEP-SPS Performance, Chamonix I X, 1999Google Scholar
  16. 16.
    R. Garoby: Multiple Splitting in the PS: Results and Alternative Filling Schemes. In: Proc. of Chamonix XI CERN-SL-2001–003 DIGoogle Scholar
  17. 17.
    See for example A. Blas, R. Cappi, R.Garoby, S. Hancock, K. Schindl, J-L. Val-let: Beams in the CERN PS Complex After the rf Upgrades for LHC. In: Proc. EPAC98, Stockholm, 1998 ( IOP, Bristol 1999 )Google Scholar
  18. 18.
    G. Jackson: Phase Space Tomography (PST) Monitor for Adjusting Bunch Rotation during Coalescing. FERMILAB-FN-469 (1987)Google Scholar
  19. 19.
    S. Hancock, P. Knaus, M. Lindroos: Tomographic Measurements of Longitudinal Phase Space Density. CERN/PS 98–030 (RF) (1998)Google Scholar
  20. 20.
    R. Garoby, S. Hancock, J.L. Vallet: Demonstration of Bunch Triple Splitting in the CERN PS. In: Proc. of Eur. Part. Acc. Conf., Vienna, Austria, 2000 ( European Phys. Soc., Geneva 2000 )Google Scholar
  21. 21.
    R. Garoby: Status of the Nominal Proton Beam for LHC in the PS. In: Proc. of the Workshop on LEP-SPS Performance, Chamonix IX, 1999. CERN/PS 99013 (RF)Google Scholar
  22. 22.
    H. Huang, M. Ball, B. Brabson et al.: Phys. Rev. E 48, 4678–4688 (1993)CrossRefADSGoogle Scholar
  23. 23.
    D. Li, M. Ball, B. Brabson, et al.: Phys. Rev. E 48, 1638–1641 (1993)CrossRefADSGoogle Scholar
  24. 24.
    D. Li, M. Ball, B. Brabson et al.: Nucl. Instr. Meth. A 364, 205–223 (1995)CrossRefADSGoogle Scholar
  25. 25.
    J.M. Byrd, W.H. Cheng, F. Zimmermann: Phys. Rev. E 57, 4706–4712 (1998)CrossRefADSGoogle Scholar
  26. 26.
    J.E. Griffin. New Method for Control of Longitudinal Emittance During Transition in Proton Synchrotrons. In: Proc. of IEEE Part. Acc. Conf., Washington, DC, 1993, pp. 408–410Google Scholar
  27. 27.
    C.M. Bhat, J. Dey, J. Griffin, I. Kourbanis, J. MacLachlan, M. Martens, K. Meisner, K.Y. Nig, J. Shan, D. Wildman: Operational Experience with Third Harmonic RF Cavity for Improved Beam Acceleation Through Transition in the Fermilab Main Ring. In: Proc. of IEEE Part. Acc. Conf., Washington, DC, 1993, pp. 405–407Google Scholar
  28. 28.
    J.M. Kats, W.T. Weng: Effects of the Second Harmonic Cavity on RF Capture and Transition Crossing. In: 15th Int. Conf. on High-Energy Acc., Hamburg, Germany, 1992 vol. 2 (World Scientific, 1992 ) pp. 1052–1054Google Scholar
  29. 29.
    J.M. Byrd, K. Baptiste, S. De Santis et al.: Nucl. Instr. Meth. A 439, 15–25 (2000)CrossRefADSGoogle Scholar
  30. 30.
    J.M. Byrd, M. Georgson: PRST-AB 4, 030701 (2001)Google Scholar
  31. 31.
    S. Bartalucci, M. Migliorati, L. Palumbo, B. Spartaro, M. Zobov: A 3rd Harmonic Cavity for Daphne. In: Proc. of 4th EPAC, London, England, 1994 ( World Scientific, Singapore 1994 )Google Scholar
  32. 32.
    M. Migliorati, L. Palumbo, M. Zobov: Nucl. Instr. Meth. A 354, 215–223 (1995)CrossRefADSGoogle Scholar
  33. 33.
    P. Bramham, A. Hofmann, P.B. Wilson: CERN-LEP-70/25 (1977)Google Scholar
  34. 34.
    P.B. Wilson: Rough Design of a Third Harmonic RF Cavity for LEP. CERNLEP-70/60 (1978)Google Scholar
  35. 35.
    C. Bernardini, G.F. Corazza, G. Di Giugno et al.: Phys. Rev. Lett. 10, 407–409 (1963)CrossRefADSGoogle Scholar
  36. 36.
    A. Piwinski: The Touschek Effect in Strong Focusing Storage Rings. DESY 98–179 (1998)Google Scholar
  37. 37.
    A. Piwinski: Touschek Effect and Intrabeam Scattering. In: A. Chao, M. Tigner(eds.): Handbook of Accelerator Physics and Engineering, second edition ( World Scientific, Singapore, 2002 )Google Scholar
  38. 38.
    J.M. Byrd, S. De Santis, M. Georgsson et al.: Nucl. Instr. Meth. A 455, 271–282 (2000)CrossRefADSGoogle Scholar
  39. 39.
    K. Bane, J. Bowers, A. Chao et al.: ‘High Intensity Single Bunch Instability Behavior in the New SLC Damping Ring Vacuum Chamber’. In: Proc. IEEE Part. ‘Acc. Conf., Dallas, TX, 1995, pp. 3109–3111Google Scholar
  40. 40.
    J.T. Seeman: Observations and Cures of Wakefield Effects in the SLC Linac. In: Proc. 5th ICFA Adv. Beam Dyn. Wkshp on Effects of Errors in Accelerators, Their Diagnosis and Correction, Corpus Christi, TX, 1991, pp. 339–346Google Scholar
  41. 41.
    J.T. Seeman, N. Merminga: Mutual Compensation of Wakefield and Chromatic Effects of Intense Linac Bunches. In: Proc. 1990 Linac Conf., Albuquerque, NM, 1990, pp. 387–389Google Scholar
  42. 42.
    G.A. Loew, J.W. Wang: Minimizing the Energy Spread within a Single Bunch by Shaping its Charge Distribution. SLAC/AP-025 (1984)Google Scholar
  43. 43.
    F.-J. Decker, R. Holtzapple, T. Raubenheimer: Overcompression, a Method to Shape the Longitudinal Bunch Distribution for a Reduced Energy Spread. In: Proc. 17th Intl. Linear Acc. Conf., Tsukuba, Japan, 1994, pp. 47–49Google Scholar
  44. 44.
    K.L.F. Bane, F.-J. Decker, J.T. Seeman, F. Zimmermann: Measurement of the Longitudinal Wakefield and the Bunch Shape in the SLAC Linac. In: Proc. IEEE Part. Acc. Conf., Vancouver, Canada, 1997Google Scholar
  45. 45.
    K.L.F. Bane, F.-J. Decker, F. Zimmermann: Obtaining the Bunch Shape in a Linac from Beam Spectrum Measurement. In: Proc. IEEE Part. Acc. Conf., New York, NY, 1999Google Scholar
  46. 46.
    J.E. Clendenin, R. H. Helm, R. K. Jobe, A. Kulikov, J.C. Sheppard: Energy Matching of 1.2 GeV Positron Beam to the SLC Damping Ring. In: Proc. XIV Intl. Conf. on High Energy Accelerators, Tsukuba, Japan, 1989Google Scholar
  47. 47.
    P. Wilson: High Energy Electron Linacs; Application to Storage Ring RF Systems and Linear Colliders, SLAC-PUB-2884 (1982)Google Scholar
  48. 48.
    F.-J. Decker, C. Adolphsen, R. Assmann et al.: ‘Long-Range Wakefields and Split-Tune Lattice at the SLC’. In: Proc. Linac96, Geneva, Switzerland, 1996Google Scholar
  49. 49.
    C. Adolphsen, K. Bane, R. Jones et al.: ‘Wakefield and Beam Centering Measurements of a Damped and Detuned X-Band Accelerator Structure’. In: Proc. IEEE Part. Acc. Conf., New York, NY, 1999Google Scholar
  50. 50.
    T. Kageyama, K. Akai, N. Akasaka et al.: ‘The ARES Cavity for the KEK B Factory’. In: Proc. Eur. Part. Acc. Conf., Sitges, Spain, 1996Google Scholar
  51. 51.
    T. Raubenheimer: In: Zeroth Order Design Report for the Next Linear Collider. SLAC Report 474, (1995) pp. 227–228Google Scholar
  52. 52.
    F. Hinode, S. Kawabata, H. Matsumoto et al.: Accelerator Test Facility—Design and Study Report, KEK Internal Report 95–4 (1995)Google Scholar
  53. 53.
    S. Kashiwagi, H. Hayano, F. Hinode et al.: ‘Preliminary Test of ±f Energy Compensation System’. In: Proc. LINAC96, Geneva, 1996Google Scholar
  54. 54.
    M. Sands: The Physics of Electron Storage Rings. SLAC-121 (1970)Google Scholar
  55. 55.
    R.D. Kohaupt, G.A. Voss: Ann. Rev. Nucl. and Part. Sci. 33, 67 (1983)CrossRefADSGoogle Scholar
  56. 56.
    I. Reichel: private communication (1997)Google Scholar
  57. 57.
    M.G. Minty, R. Brown, F.-J. Decker et al.: ‘Using a Fast-Gated Camera for Measurements of Transverse Beam Distributions and Damping Times’. In: J.A. Hinkson, G. Stover (eds.): Proc. Accelerator Instrumentation Workshop, Berkeley AIP Conf. Proc. 281, 1992, p. 158Google Scholar
  58. 58.
    K. Oide: SAD Accelerator Modelling Code, unpublishedGoogle Scholar
  59. 59.
    R. Akre, F.J. Decker, M.G. Minty et al.: ‘;RF Frequency Shift during Beam Storage in the SLC Damping Rings’, In: Proc. IEEE Part. Acc. Conf., New York, NY, 1999Google Scholar
  60. 60.
    G. Hoffstätter: private communication (1999)Google Scholar
  61. 61.
    M.G. Minty, R. Akre, F.-J. Decker, J. Frisch, S. Kuroda, F. Zimmermann: Emittance Reduction via Dynamic RF Frequency Shift at the SLC Damping Rings. In: Proc. 17th Intl. Conf. on High-Energy Acc., Dubna, Russia, 1998Google Scholar
  62. 62.
    D. Schulte: Study of Electromagnetic and Hadronic Background in the Interaction Region of the TESLA Collider. Ph.D. thesis, University of Hamburg (1996)Google Scholar
  63. 63.
    G. Hoffstätter, F. Willeke: Electron Dynamics in the HERA Luminosity Upgrade Lattice of the Year 2000. In: Proc. IEEE Part. Acc. Conf., New York, NY, 1999Google Scholar

Copyright information

© The Author(s) 2003

Open Access This chapter was originally published with exclusive rights reserved by the Publisher in 2003 and was licensed as an open access publication in November 2019 under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license if changes were made.

The images or other third party material in this chapter may be included in the chapter’s Creative Commons license, unless indicated otherwise in a credit line to the material or in the Correction Note appended to the chapter. For details on rights and licenses please read the Correction  https://doi.org/10.1007/978-3-662-08581-3_13. If material is not included in the chapter’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Authors and Affiliations

  • Michiko G. Minty
    • 1
  • Frank Zimmermann
    • 2
  1. 1.DESY - MDEHamburgGermany
  2. 2.AB Division, ABP GroupCERNGeneva 23Switzerland

Personalised recommendations