Advertisement

Contextual Grammars and Formal Languages

  • Andrzej Ehrenfeucht
  • Gheorghe Păun
  • Grzegorz Rozenberg
Chapter

Abstract

Contextual grammars were introduced by S. Marcus in 1969 [29], in an attempt to build a bridge between analytical and generative models of natural languages. In particular, contextual grammars were “translating” the central notion of context from the analytical models into the framework of generative grammars. The chapter by S. Marcus in this handbook [31] gives a lucid account of the motivation behind contextual grammars from the natural point of view.

Keywords

Formal Language Regular Language Closure Property Contextual Grammar Contextual Language 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    T. Bălănescu, M. Gheorghe, Program tracing and languages of action, Rev. Roum. Ling., 32 (1987), 167–170.zbMATHGoogle Scholar
  2. [2]
    I. Bucurescu, A. Pascu, Fuzzy contextual grammars, Rev. Roum. Math. Pures Appl., 32 (1987), 497–507.MathSciNetzbMATHGoogle Scholar
  3. [3]
    G. Ciucar, On the syntactic complexity of Galiukschov semicontextual languages, Cah. Ling. Th. Appl., 25 (1988), 23–28.Google Scholar
  4. [4]
    E. Csuhaj-Varju, J. Dassow, J. Kelemen, Gh. Pâun, Grammar Systems. A Grammatical Approach to Distribution and Cooperation, Gordon and Breach, London, 1994.zbMATHGoogle Scholar
  5. [5]
    J. Dassow, On contextual grammar forms, Intern. J. Computer Math., 17 (1985), 37–52.CrossRefGoogle Scholar
  6. [6]
    J. Dassow, Gh. Pâun, Regulated Rewriting in Formal Language Theory, Springer-Verlag, Berlin, Heidelberg, 1989.CrossRefGoogle Scholar
  7. [7]
    A. Ehrenfeucht, L. Ilie, Gh. Pâun, G. Rozenberg, A. Salomaa, On the generative capacity of certain classes of contextual grammars, In Mathematical Linguistics and Related Topics ( Gh. Pâun, ed.), Ed. Acaderniei, Bucharest, 1995, 105–118.Google Scholar
  8. [8]
    A. Ehrenfeucht, A. Mateescu, Gh. Pâun, G. Rozenberg, A. Salomaa, On representing RE languages by one-sided internal contextual languages, Technical Report 95–04,Dept. of Computer Sci., Leiden Univ., 1995, and Acta Cybernetica,to appear.Google Scholar
  9. [9]
    A. Ehrenfeucht, Gh. Pâun, G. Rozenberg, Normal forms for contextual grammars, In Mathematical Aspects of Natural and Formal Languages ( Gh. Pâun, ed.), World Sci. Publ., Singapore, 1994, 79–96.CrossRefGoogle Scholar
  10. [10]
    A. Ehrenfeucht, Gh. Pâun, G. Rozenberg, The linear landscape of external contextual languages, Acta Informatica,33 (1996), 571–593..MathSciNetCrossRefGoogle Scholar
  11. [11]
    A. Ehrenfeucht, Gh. Pâun, G. Rozenberg, On representing recursively enumerable languages by internal contextual languages, Th. Computer Sci., 1996.Google Scholar
  12. [12]
    R. Freund, Gh. Pâun, G. Rozenberg, Contextual array grammars, Technical Report 95–38, Dept. of Computer Sci., Leiden Univ., 1995.Google Scholar
  13. [13]
    B. S. Galiukschov, Semicontextual grammars, Mat. logica i mat. ling.,Kalinin Univ., 1981, 38–50 (in Russ.).Google Scholar
  14. [14]
    G. Georgescu, Infinite hierarchies of some types of contextual languages, In Mathematical Aspects of Natural and Formal Languages ( Gh. Pâun, ed.), World Sci. Publ., Singapore, 1994, 137–150.CrossRefGoogle Scholar
  15. [15]
    I. M. Havel, On branching and looping. Part I, Th. Computer Sci., 10 (1980), 187–220.CrossRefGoogle Scholar
  16. [16]
    T. Head, Formal language theory and DNA: an analysis of the generative capacity of specific recombinant behaviors, Bull. Math. Biology, 49 (1987), 737–759.MathSciNetCrossRefGoogle Scholar
  17. [17]
    T. Head, Gh. Phu’’, D. Pixton, Language theory and molecular genetics: generative mechanisms suggested by DNA recombination, in this Handbook.Google Scholar
  18. [18]
    L. Ilie, On contextual grammars with parallel derivation, In Mathematical Aspects of Natural and Formal Languages ( Gh. Pâun, ed.), World Sci. Publ., Singapore, 1994, 165–172.CrossRefGoogle Scholar
  19. [19]
    L. Ilie, On ambiguity in contextual languages, Intern. Conf. Math. Ling., Tarragona, 1996.Google Scholar
  20. [20]
    L. Ilie, A non-semilinear language generated by an internal contextual grammar with finite choice, Ann. Univ. Buc., Matem.-Inform. Series, 45, 1 (1996), 63–70.Google Scholar
  21. [21]
    S. Istrail, A problem about contextual grammars with choice, Stud. Cerc. Matem., 30 (1978), 135–139.zbMATHGoogle Scholar
  22. [22]
    S. Istrail, Contextual grammars with regulated selection, Stud. Cerc. Matem., 30 (1978), 287–294.zbMATHGoogle Scholar
  23. [23]
    S. Istrail, A fixed-point approach to contextual languages, Rev. Roum. Math. Pures Appl., 25 (1980), 861–869.MathSciNetzbMATHGoogle Scholar
  24. [24]
    M. Ito, Generalized contextual languages, Cah. Ling. Th. Appl., 11 (1974), 73–77.Google Scholar
  25. [25]
    P. Jancar, F. Mraz, M. Platek, M. Prochazka, J. Vogel, Restarting automata, Marcus grammars, and context-free grammars, Proc. Developments in Language Theory Conf., Magdeburg, 1995, 102–111.Google Scholar
  26. [26]
    L. Kari, On insertion and deletion in formal languages, PH D Thesis, Univ. of Turku, 1991.Google Scholar
  27. [27]
    M. Marcus, Gh. Pâun, Regulated Galiukschov semicontextual grammars, Kybernetika, 26 (1990), 316–326.MathSciNetzbMATHGoogle Scholar
  28. [28]
    S. Marcus, Algebraic Linguistics. Analytical Models, Academic Press, New York, 1967.zbMATHGoogle Scholar
  29. [29]
    S. Marcus, Contextual grammars, Rev. Roum. Math. Pures Appl., 14 (1969), 1525–1534.MathSciNetzbMATHGoogle Scholar
  30. [30]
    S. Marcus, Deux types nouveaux de grammaires génératives, Cah. Ling. Th. Appl., 6 (1969), 69–74.Google Scholar
  31. [31]
    S. Marcus, Contextual grammars and natural languages, in this Handbook.Google Scholar
  32. [32]
    S. Marcus, C. Martin-Vide, Gh. Pâun, On the power of internal contextual grammars with maximal use of selectors, Fourth meeting on mathematics of language, Philadelphia, 1995.Google Scholar
  33. [33]
    C. Martin-Vide, A. Mateescu, J. Miquel-Verges, Gh. Päun, Contextual grammars with maximal, minimal and scattered use of contexts, BISFAI ‘85 Conf. (M. Kappel, E. Shamir, eds. ), Jerusalem, 1995, 132–142.Google Scholar
  34. [34]
    C. Martin-Vide, J. Miquel-Verges, Gh. Pâun, Contextual grammars with depth-first derivation, Tenth Twente Workshop on Language Technology, Twente, 1995.Google Scholar
  35. [35]
    C. Martin-Vide, J. Miquel-Verges, Gh. Pâun, A. Salomaa, An attempt to define the ambiguity of internal contextual languages, Intern. Conf. Math. Ling., Tarragona, 1996.Google Scholar
  36. [36]
    A. Mateescu, Marcus contextual grammars with shuffled contexts, in vol. Mathematical Aspects of Natural and Formal Languages (Gh. Pâun, ed.), World Sci. Publ., Singapore, 1994, 275–284.CrossRefGoogle Scholar
  37. [37]
    H. A. Maurer, A. Salomaa, D. Wood, Pure grammars, Inform. Control, 44 (1980), 47–72.MathSciNetCrossRefGoogle Scholar
  38. [38]
    V. Mitrana, Contextual grammars: the strategy of minimal competence, in vol. Mathematical Aspects of Natural and Formal Languages (Gh. Pâun, ed.), World Sci. Publ., Singapore, 1994, 319–331.CrossRefGoogle Scholar
  39. [39]
    V. Mitrana, Contextual insertion and deletion, in vol. Mathematical Linguistics and Related Topics (Gh. Pâun, ed.), The Publ. House of the Romanian Academy, Bucharest, 1995, 271–278.Google Scholar
  40. [40]
    X. M. Nguyen, On the n-contextual grammars, Rev. Roum. Math. Pures Appl., 25 (1980), 1395–1406.zbMATHGoogle Scholar
  41. [41]
    X. M. Nguyen, N-contextual grammars with syntactical invariant choice, Found. Control Engineering, 5 (1980), 21–29.MathSciNetzbMATHGoogle Scholar
  42. [42]
    X. M. Nguyen, Some classes of n-contextual grammars, Rev. Roum. Math. Pures Appl., 26 (1981), 1221–1233.MathSciNetzbMATHGoogle Scholar
  43. [43]
    X. M. Nguyen, On Some Generalizations of Contextual Grammars, PhD Thesis, Univ. of Bucharest, 1981.Google Scholar
  44. [44]
    X. M. Nguyen, Gh. Nun, On the generative capacity of n-contextual grammars, Bull. Math. Soc. Sci. Math. Roumanie, 25, 74 (1982), 345–354.MathSciNetzbMATHGoogle Scholar
  45. [45]
    M. Novotny, On a class of contextual grammars, Cah. Ling. Th. Appl., 11 (1974), 313–315.Google Scholar
  46. [46]
    M. Novotny, Each generalized contextual language is context-sensitive, Rev. Roum. Math. Pures Appl., 21 (1976), 353–362.MathSciNetzbMATHGoogle Scholar
  47. [47]
    M. Novotny, On some variants of contextual grammars, Rev. Roum. Math. Pures Appl., 21 (1976), 1053–1062.zbMATHGoogle Scholar
  48. [48]
    M. Novotny, Contextual grammars vs. context-free algebras, Czech. Math. Journal, 32 (1982), 529–547.MathSciNetzbMATHGoogle Scholar
  49. [49]
    M. Novotny, On some constructions of grammars for linear languages, Intern. J. Computer Math., 17 (1985), 65–77.CrossRefGoogle Scholar
  50. [50]
    Gh. Pâun, On contextual grammars, Stud. Cere. Matem., 26 (1974), 1111–1129.MathSciNetGoogle Scholar
  51. [51]
    Gh. Nun, On the complexity of contextual grammars with choice, Stud. Cere. Matem., 27 (1975), 559–569.Google Scholar
  52. [52]
    Gh. Nun, Contextual grammars with restriction in derivation, Rev. Roum. Math. Pures Appl., 22 (1977), 1147–1154.MathSciNetGoogle Scholar
  53. [53]
    Gh. Nun, On some classes of contextual grammars, Bull. Math. Soc. Sci. Math. Roumanie, 22 (70) (1978), 183–189.MathSciNetGoogle Scholar
  54. [54]
    Gh. Nun, An infinite hierarchy of contextual languages with choice, Bull. Math. Soc. Sci. Math. Roumanie, 22 (70) (1978), 425–430.MathSciNetGoogle Scholar
  55. [55]
    Gh. Pâun, Operations with contextual grammars and languages, Stud. Cere. Matem., 30 (1978), 425–439.MathSciNetzbMATHGoogle Scholar
  56. [56]
    Gh. Nun, Two infinite hierarchies defined by branching grammars, Kybernetika, 14, 5 (1978), 397–407.MathSciNetGoogle Scholar
  57. [57]
    Gh. Pâun, A formal linguistic model of action systems, Ars Semeiotica, 2 (1979), 33–47.Google Scholar
  58. [58]
    Gh. Nun, Marcus’ contextual grammars and languages. A survey, Rev. Roum. Math. Pures Appl., 24 (1979), 1467–1486.MathSciNetzbMATHGoogle Scholar
  59. [59]
    Gh. Nun, Generative Mechanisms for Some Economic Processes, The Technical Publ. House, Bucharest, 1980 (in Romanian).Google Scholar
  60. [60]
    Gh. Nun, Contextual Grammars, The Publ. House of the Romanian Academy, Bucharest, 1982 (in Romanian).Google Scholar
  61. [61]
    Gh. Nun, Modelling economic processes by means of formal grammars: a survey of results at the middle of 1981, Acta Appl. Math., 1 (1983), 79–95.MathSciNetCrossRefGoogle Scholar
  62. [62]
    Gh. Pâun, On semicontextual grammars, Bull. Math. Soc. Sci. Math. Roumanie,28(76) (1984), 63–68Google Scholar
  63. [63]
    Gh. Pâun, Two theorems about Galiukschov semicontextual languages, Kybernetika, 21 (1985), 360–365.MathSciNetzbMATHGoogle Scholar
  64. [64]
    Gh. Nun, Semiconditional contextual grammars, Fundamenta Inform., 8 (1985), 151–161.MathSciNetzbMATHGoogle Scholar
  65. [65]
    Gh. Nun, On some open problems about Marcus contextual languages, Intern. J. Computer Math., 17 (1985), 9–23.CrossRefGoogle Scholar
  66. [66]
    Gh. Nun, A new class of contextual grammars, Rev. Roum. Ling., 33 (1988), 167–171.Google Scholar
  67. [67]
    Gh. Nun, Further remarks on the syntactical complexity of Marcus contextual languages, Ann. Univ. Bue., Ser. Matem.-Inform., 39–40 (1991), 72–82.Google Scholar
  68. [68]
    Gh. Nun, Marcus Contextual grammars. After 25 years, Bulletin EATCS, 52 (1994), 263–273.Google Scholar
  69. [69]
    Gh. Nun, X. M. Nguyen, On the inner contextual grammars, Rev. Roum. Math. Pures Appl., 25 (1980), 641–651.MathSciNetzbMATHGoogle Scholar
  70. [70]
    Gh. Pâun, G. Rozenberg, A. Salomaa, Contextual grammars: erasing, determinism, one-sided contexts, In Developments in Language Theory ( G. Rozenberg, A. Salomaa, eds.), World Sci. Publ., Singapore, 1994, 370–388.Google Scholar
  71. [71]
    Gh. Pâun, G. Rozenberg, A. Salomaa, Grammars based on the shuffle operation, J. Universal Computer Sci., 1 (1995), 67–81.MathSciNetzbMATHGoogle Scholar
  72. [72]
    Gh. Pâun, G. Rozenberg, A. Salomaa, Contextual grammars: parallelism and blocking of derivation, Fundamenta Inform., 41, 12 (1996), 83–108.MathSciNetzbMATHGoogle Scholar
  73. [73]
    Gh. Pâun, G. Rozenberg, A. Salomaa, Marcus contextual grammars: modularity and leftmost derivation, In Mathematical Aspects of Natural and Formal Languages ( Gh. Pâun, ed.), World Sci. Publ., Singapore, 1994, 375–392.CrossRefGoogle Scholar
  74. [74]
    Gh. Pâun, G. Rozenberg, A. Salomaa, Contextual grammars: deterministic derivations and growth functions, Rev. Roum. Math. Pures Appl., 41, 12 (1996), 83–108.MathSciNetzbMATHGoogle Scholar
  75. [75]
    Gh. Pâun, A. Salomaa, Thin and slender languages, Discr. Appl. Math., 61 (1995), 257–270.MathSciNetCrossRefGoogle Scholar
  76. [76]
    M. Penttonen, One-sided and two-sided contexts in formal grammars, Inform. Control, 25 (1974), 371–392.MathSciNetCrossRefGoogle Scholar
  77. [77]
    A. Salomaa, Formal Languages, Academic Press, New York, London, 1973.zbMATHGoogle Scholar
  78. [78]
    C. C. Squier, Semicontextual grammars: an example, Bull. Math. Soc. Sci. Math. Roumanie, 32 (80) (1988), 167–170.MathSciNetzbMATHGoogle Scholar
  79. [79]
    S. Vicolov, Two theorems about Marcus contextual languages, Bull. Math. Soc. Sci. Math. Roumanie, 35 (83) (1991), 167–170.MathSciNetzbMATHGoogle Scholar
  80. [80]
    S. Vicolov-Dumitrescu, On the total parallelism in contextual grammars, in vol. Mathematical Linguistics and Related Topics (Gh. Pâun, ed.), The Publ. House of the Romanian Academy, Bucharest, 1995, 350–360.Google Scholar
  81. [81]
    S. H. von Solms, The characterization by automata of certain classes of languages in the context-sensitive area, Inform. Control, 27 (1975), 262–271.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Andrzej Ehrenfeucht
  • Gheorghe Păun
  • Grzegorz Rozenberg

There are no affiliations available

Personalised recommendations