Skip to main content

Molecular Biology of Fungal Amino Acid Biosynthesis Regulation

  • Chapter
Genetics and Biotechnology

Part of the book series: The Mycota ((MYCOTA,volume 2))

Abstract

Amino acids are essential precursors for the ribosomal biosynthesis of proteins. In addition, amino acids are used as precursors of nonribosomal synthetic products including such important pharmaceutically relevant secondary metabolites as the β-lactam antibiotics or their derivatives of fungi (Brakhage 1998; see also Chap. 16, this Vol.). Most fungal cells prefer to acquire the 20 different amino acids for translation by uptake from the diet. Amino acid uptake primarily depends on the nutritional conditions and requires appropriate sensors and uptake systems. When the required amino acid is present in the cultivation medium, no further specific enzyme activities are needed. Numerous fungi are also able to produce and secrete proteases to explore additional nutritional sources. Induction of those activities might require starvation conditions (e.g., for nitrogen) as well as the presence of extracellular protein. Secreted proteases permit the extracellular degradation of proteins and, therefore, the production of extracellular amino acids (Ogrydziak 1993; Pavlukova et al. 1998). This is especially required in an environment lacking further nitrogen or carbon sources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albrecht G, Mösch HU, Hoffmann B, Reusser U, Braus GH (1998) Monitoring the Gcn4 protein-mediated response in the yeast Saccharomyces cerevisiae. J Biol Chem 273: 12696–12702

    PubMed  CAS  Google Scholar 

  • Arndt K, Fink GR (1986) GCN4 protein, a positive transcription factor in yeast, binds general control promoters at all 5’ TGACTC 3’ sequences. Proc Natl Acad Sci USA 83: 8516–8520

    PubMed  CAS  Google Scholar 

  • Barbet NC, Schneider U, Helliwell SB, Stansfield I, Tuite MF, Hall MN (1996) TOR controls translation initiation and early G1 progression in yeast. Mol Biol Cell 7: 25–42

    PubMed  CAS  Google Scholar 

  • Barthelmess IB, Kolanus J (1990) The range of amino acids whose limitation activates general amino-acid control in Neurospora crassa. Genet Res 55: 7–12

    PubMed  CAS  Google Scholar 

  • Beck T, Hall MN (1999) The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors. Nature 402: 689–692

    PubMed  CAS  Google Scholar 

  • Beck T, Schmidt A, Hall MN (1999) Starvation induces vacuolar targeting and degradation of the tryptophan permease in yeast. J Cell Biol 146: 1227–1238

    PubMed  CAS  Google Scholar 

  • Belotserkovskaya R, Sterner DE, Deng M, Sayre MH, Lieberman PM, Berger SL (2000) Inhibition of TATA-binding protein function by SAGA subunits Spt3 and Spt8 at Gcn4-activated promoters. Mol Cell Biol 20: 634–647

    PubMed  CAS  Google Scholar 

  • Berlanga JJ, Santoyo J, de Haro C (1999) Characterization of a mammalian homolog of the GCN2 eukaryotic initiation factor 2alpha kinase. Eur J Biochem 265: 754–762

    PubMed  CAS  Google Scholar 

  • Bertram PG, Choi JH, Carvalho J, Ai W, Zeng C, Chan TF, Zheng XF (2000) Tripartite regulation of Gln3p by TOR, Ure2p, and phosphatases. J Biol Chem 275: 35727–35733

    PubMed  CAS  Google Scholar 

  • Blondel M, Galan JM, Chi Y, Lafourcade C, Longaretti C, Deshaies RJ, Peter M (2000) Nuclear-specific degradation of Fart is controlled by the localization of the F-box protein Cdc4. EMBO J 19: 6085–6097

    PubMed  CAS  Google Scholar 

  • Brakhage AA (1998) Molecular regulation of beta-lactam biosynthesis in filamentous fungi. Microbiol Mol Biol Rev 62: 547–585

    PubMed  CAS  Google Scholar 

  • Braus GH (1991) Aromatic amino acid biosynthesis in the yeast Saccharomyces cerevisiae: a model system for the regulation of a eukaryotic biosynthetic pathway. Microbiol Rev 55: 349–370

    PubMed  CAS  Google Scholar 

  • Busch S, Hoffmann B, Valerius O, Starke K, Düvel K, Braus GH (2001) Regulation of the Aspergillus nidulans hisB gene by histidine starvation. Curr Genet 38: 314–322

    PubMed  CAS  Google Scholar 

  • Busch S, Bode HB, Brakhage AA, Braus GH (2002) Impact of the cross-pathway control on regulation of the lysine and penicillin biosynthesis in Aspergillus nidulans. Curr Genet 42: 209–219

    PubMed  Google Scholar 

  • Cahel M, Rudd KE (1987) The stringent response. In: Neidhardt FC, Ingraham JL, Magasanik B, Low KB, Schaechter M, Umbareger HE (eds) Escherichia coli and Salmonella typhimurium: cellular and molecular biology. American Society for Microbiology, Washington, DC, pp 1410–1438

    Google Scholar 

  • Cardenas ME, Cutler NS, Lorenz MC, Di Como CJ, Heitman J (1999) The TOR signaling cascade regulates gene expression in response to nutrients. Genes Dev 13: 3271–3279

    PubMed  CAS  Google Scholar 

  • Carsiotis M, Jones RF (1974) Cross-pathway regulation: tryptophan-mediated control of histidine and arginine biosynthetic enzymes in Neurospora crassa. J Bacteriol 119: 889–892

    PubMed  CAS  Google Scholar 

  • Carsiotis M, Jones RF, Wesseling AC (1974) Cross-pathway regulation: histidine-mediated control of histidine, tryptophan, and arginine biosynthetic enzymes in Neurospora crassa. J Bacteriol 119: 893–898

    PubMed  CAS  Google Scholar 

  • Chantrel Y, Gaisne M, Lions C, Verdiere J (1998) The transcriptional regulator Hap 1p (Cyp1p) is essential for anaerobic or heme-deficient growth of Saccharomyces cerevisiae: genetic and molecular characterization of an extragenic suppressor that encodes a WD repeat protein. Genetics 148: 559–569

    PubMed  CAS  Google Scholar 

  • Chi Y, Huddleston MJ, Zhang X, Young RA, Annan RS, Carr SA, Deshaies RJ (2001) Negative regulation of Gcn4 and Msn2 transcription factors by Srb10 cyclindependent kinase. Genes Dev 15: 1078–1092

    PubMed  CAS  Google Scholar 

  • Clemens MJ (1994) Regulation of eukaryotic protein synthesis by protein kinases that phosphorylate initiation factor eIF-2. Mol Biol Rep 19: 201–210

    PubMed  CAS  Google Scholar 

  • Clemens MJ (1996) Protein kinases that phosphorylate eIF2 and eIF2B, and their role in eukaryotic cell translational control. In: Hershey JWB, Mathews MB, Sonenberg N (eds) Translational control. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 139–172

    Google Scholar 

  • Cooper T (2002) Transmitting the signal of excess nitrogen in Saccharomyces cerevisiae from the Tor proteins to the GATA factors: connecting the dots. FEMS Microbiol Rev 26: 223

    PubMed  CAS  Google Scholar 

  • Cote J, Peterson CL, Workman JL (1998) Perturbation of nucleosome core structure by the SWI/SNF complex persists after its detachment, enhancing subsequent transcription factor binding. Proc Natl Acad Sci USA 95: 4947–4952

    PubMed  CAS  Google Scholar 

  • Crespo JL, Powers T, Fowler B, Hall MN (2002) The TOR-controlled transcription activators GLN3, RTG1, and RTG3 are regulated in response to intracellular levels of glutamine. Proc Natl Acad Sci USA 99: 6784–6789

    PubMed  CAS  Google Scholar 

  • Cruz MC, Cavallo LM, Gorlach JM, Cox G, Perfect JR, Cardenas ME, Heitman J (1999) Rapamycin antifungal action is mediated via conserved complexes with FKBP12 and TOR kinase homologs in Cryptococcus neoformans. Mol Cell Biol 19: 4101–4112

    PubMed  CAS  Google Scholar 

  • Cruz MC, Goldstein AL, Blankenship J, del Poeta M, Perfect JR, McCusker JH, Bennani YL, Cardenas ME, Heitman J (2001) Rapamycin and less immunosuppressive analogs are toxic to Candida albicans and Cryptococcus neoformans via FKBP12-dependent inhibition of TOR. Antimicrob Agents Chemother 45: 3162–3170

    PubMed  CAS  Google Scholar 

  • Dennis PB, Jaeschke A, Saitoh M, Fowler B, Kozma SC, Thomas G (2001) Mammalian TOR: a homeostatic ATP sensor. Science 294: 1102–1105

    PubMed  CAS  Google Scholar 

  • Dever TE, Chen JJ, Barber GN, Cigan AM, Feng L, Donahue TF, London IM, Katze MG, Hinnebusch AG (1993) Mammalian eukaryotic initiation factor 2 alpha kinases functionally substitute for GCN2 protein kinase in the GCN4 translational control mechanism of yeast. Proc Natl Acad Sci USA 90: 4616–4620

    PubMed  CAS  Google Scholar 

  • Didion T, Regenberg B, Jorgensen MU, Kielland-Brandt MC, Andersen HA (1998) The permease homologue Ssylp controls the expression of amino acid and peptide transporter genes in Saccharomyces cerevisiae. Mol Microbiol 27: 643–650

    PubMed  CAS  Google Scholar 

  • Donahue TF, Cigan AM, Pabich EK, Valavicius BC (1988) Mutations at a Zn(II) finger motif in the yeast eIF-2 beta gene alter ribosomal start-site selection during the scanning process. Cell 54: 621–632

    PubMed  CAS  Google Scholar 

  • Dong J, Qiu H, Garcia-Barrio M, Anderson J, Hinnebusch AG (2000) Uncharged tRNA activates GCN2 by displacing the protein kinase moiety from a bipartite tRNA-binding domain. Mol Cell 6: 269–279

    PubMed  CAS  Google Scholar 

  • Drysdale CM, Duenas E, Jackson BM, Reusser U, Braus GH, Hinnebusch AG (1995) The transcriptional activator GCN4 contains multiple activation domains that are critically dependent on hydrophobic amino acids. Mol Cell Biol 15: 1220–1233

    PubMed  CAS  Google Scholar 

  • Drysdale CM, Jackson BM, McVeigh R, Klebanow ER, Bai Y, Kokubo T, Swanson M, Nakatani Y, Weil PA, Hinnebusch AG (1998) The Gcn4p activation domain interacts specifically in vitro with RNA polymerase II holoenzyme, TFIID, and the Adap-Gcn5p coactivator complex. Mol Cell Biol 18: 1711–1724

    PubMed  CAS  Google Scholar 

  • Eckert SE, Hoffmann B, Wanke C, Braus GH (1999) Sexual development of Aspergillus nidulans in tryptophan auxotrophic strains. Arch Microbiol 172: 157–166

    PubMed  CAS  Google Scholar 

  • Eckert SE, Kübler E, Hoffmann B, Braus GH (2000) The tryptophan synthase-encoding trpB gene of Aspergillus nidulans is regulated by the cross-pathway control system. Mol Gen Genet 263: 867–876

    PubMed  CAS  Google Scholar 

  • Engelberg D, Klein C, Martinetto H, Struhl K, Karin M (1994) The UV response involving the Ras signaling pathway and AP-1 transcription factors is conserved between yeast and mammals. Cell 77: 381–390

    PubMed  CAS  Google Scholar 

  • Erickson FL, Harding LD, Dorris DR, Hannig EM (1997) Functional analysis of homologs of translation initiation factor 2gamma in yeast. Mol Gen Genet 253: 711–719

    PubMed  CAS  Google Scholar 

  • Feller A, Dubois E, Ramos F, Pierard A (1994) Repression of the genes for lysine biosynthesis in Saccharomyces cerevisiae is caused by limitation of Lys14-dependent transcriptional activation. Mol Cell Biol 14: 6411–6418

    PubMed  CAS  Google Scholar 

  • Forsberg H, Ljungdahl PO (2001) Sensors of extracellular nutrients in Saccharomyces cerevisiae. Curr Genet 40: 91–109

    PubMed  CAS  Google Scholar 

  • Garcia-Barrio M, Dong J, Ufano S, Hinnebusch AG (2000) Association of GCNl-GCN20 regulatory complex with the N-terminus of elF2alpha kinase GCN2 is required for GCN2 activation. EMBO J 19: 1887–1899

    PubMed  CAS  Google Scholar 

  • Garcia-Barrio M, Dong J, Cherkasova VA, Zhang X, Zhang F, Ufano S, Lai R, Qin J, Hinnebusch AG (2002) Serine 577 is phosphorylated and negatively affects the tRNA binding and elF2alpha kinase activities of GCN2. J Biol Chem 277: 30675–30683

    PubMed  CAS  Google Scholar 

  • Georgakopoulos T, Thireos G (1992) Two distinct yeast transcriptional activators require the function of the GCN5 protein to promote normal levels of transcription. EMBO J 11: 4145–4152

    PubMed  CAS  Google Scholar 

  • Geraghty MT, Bassett D, Morrell JC, Gatto GJ Jr, Bai J, Geisbrecht BV, Hieter P, Gould SJ (1999) Detecting patterns of protein distribution and gene expression in silico. Proc Natl Acad Sci USA 96: 2937–2942

    PubMed  CAS  Google Scholar 

  • Gingras AC, Raught B, Sonenberg N (2001) Regulation of translation initiation by FRAP/mTOR. Genes Dev 15: 807–826

    PubMed  CAS  Google Scholar 

  • Goossens A, Dever TE, Pascual-Ahuir A, Serrano R (2001) The protein kinase Gcn2p mediates sodium toxicity in yeast. J Biol Chem 276: 30753–30760

    PubMed  CAS  Google Scholar 

  • Görlich D, Mattaj IW (1996) Nucleocytoplasmic transport. Science 271: 1513–1518

    PubMed  Google Scholar 

  • Görlich D, Kostka S, Kraft R, Dingwall C, Laskey RA, Hartmann E, Prehn S (1995) Two different subunits of importin cooperate to recognize nuclear localization signals and bind them to the nuclear envelope. Curr Biol 5: 383–392

    PubMed  Google Scholar 

  • Graf R, Mehmann B, Braus GH (1993) Analysis of feedback-resistant anthranilate synthases from Saccharomyces cerevisiae. J Bacteriol 175: 1061–1068

    PubMed  CAS  Google Scholar 

  • Green MR (2000) TBP-associated factors (TAFIIs): multiple, selective transcriptional mediators in common complexes. Trends Biochem Sci 25: 59–63

    PubMed  CAS  Google Scholar 

  • Grundmann O, Mösch HU, Braus GH (2001) Repression of GCN4 mRNA translation by nitrogen starvation in Saccharomyces cerevisiae. J Biol Chem 276: 25661–25671

    PubMed  CAS  Google Scholar 

  • Harashima S, Hinnebusch AG (1986) Multiple GCD genes required for repression of GCN4, a transcriptional activator of amino acid biosynthetic genes in Saccharomyces cerevisiae. Mol Cell Biol 6: 39903998

    Google Scholar 

  • Harding HP, Zhang Y, Ron D (1999) Protein translation and folding are coupled by an endoplasmic-reticulumresident kinase. Nature 397: 271–274

    PubMed  CAS  Google Scholar 

  • Hardwick JS, Kuruvilla FG, Tong JK, Shamji AF, Schreiber SL (1999) Rapamycin-modulated transcription defines the subset of nutrient-sensitive signaling pathways directly controlled by the Tor proteins. Proc Natl Acad Sci USA 96: 14866–14870

    PubMed  CAS  Google Scholar 

  • Hartmann M, Heinrich G, Braus GH (2001) Regulative fine-tuning of the two novel DAHP isoenzymes aroFp and aroGp of the filamentous fungus Aspergillus nidulans. Arch Microbiol 175: 112–121

    PubMed  CAS  Google Scholar 

  • Heitman J, Movva NR, Hall MN (1991) Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 253: 905–909

    PubMed  CAS  Google Scholar 

  • Helliwell SB, Howald I, Barbet N, Hall MN (1998) TOR2 is part of two related signaling pathways coordinating cell growth in Saccharomyces cerevisiae. Genetics 148: 99–112

    PubMed  CAS  Google Scholar 

  • Helmstaedt K, Krappmann S, Braus GH (2001) Allosteric regulation of catalytic activity: Escherichia coli aspartate transcarbamoylase versus yeast chorismate mutase. Microbiol Mol Biol Rev 65: 404–421

    PubMed  CAS  Google Scholar 

  • Hershey JW, Asano K, Naranda T, Vornlocher HP, Hanachi P, Merrick WC (1996) Conservation and diversity in the structure of translation initiation factor EIF3 from humans and yeast. Biochimie 78: 903–907

    PubMed  CAS  Google Scholar 

  • Hinnebusch AG (1986) The general control of amino acid biosynthetic genes in the yeast Saccharomyces cerevisiae. CRC Crit Rev Biochem 21: 277–317

    PubMed  CAS  Google Scholar 

  • Hinnebusch AG (1992) General and pathway-specific regulatory mechanisms controlling the synthesis of amino acid biosynthetic enzymes in Saccharomyces cerevisiae. In: Broach JR, Jones EW, Pringle JR (eds) The molecular and cellular biology of the yeast Saccharomyces cerevisiae: gene expression. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 319–414

    Google Scholar 

  • Hinnebusch AG (1997) Translational regulation of yeast GCN4. A window on factors that control initiatortRNA binding to the ribosome. J Biol Chem 272: 21661–21664

    PubMed  CAS  Google Scholar 

  • Hinnebusch AG, Natarajan K (2002) Gcn4p, a master regulator of gene expression, is controlled at multiple levels by diverse signals of starvation and stress. Euk Cell 1: 22–32

    CAS  Google Scholar 

  • Hoffmann B, Mösch HU, Sattlegger E, Barthelmess IB, Hinnebusch A, Braus GH (1999) The WD protein Cpc2p is required for repression of Gcn4 protein activity in yeast in the absence of amino-acid starvation. Mol Microbiol 31: 807–822

    PubMed  CAS  Google Scholar 

  • Hoffmann B, Wanke C, Lapaglia SK, Braus GH (2000) c-Jun and RACK1 homologues regulate a control point for sexual development in Aspergillus nidulans. Mol Microbiol 37: 28–41

    Google Scholar 

  • Hoffmann B, Valerius O, Andermann M, Braus GH (2001) Transcriptional autoregulation and inhibition of mRNA translation of amino acid regulator gene cpcA of filamentous fungus Aspergillus nidulans. Mol Biol Cell 12: 2846–2857

    PubMed  CAS  Google Scholar 

  • Holstege FC, Jennings EG, Wyrick JJ, Lee TI, Hengartner CJ, Green MR, Golub TR, Lander ES, Young RA (1998) Dissecting the regulatory circuitry of a eukaryotic genome. Cell 95: 717–728

    PubMed  CAS  Google Scholar 

  • Hope IA, Struhl K (1986) Functional dissection of a eukaryotic transcriptional activator protein, GCN4 of yeast. Cell 46: 885–894

    PubMed  CAS  Google Scholar 

  • Iraqui I, Vissers S, Bernard F, de Craene JO, Boles E, Urrestarazu A, Andre B (1999) Amino acid signaling in Saccharomyces cerevisiae: a permease-like sensor of external amino acids and F-Box protein Grrlp are required for transcriptional induction of the AGP1 gene, which encodes a broad-specificity amino acid permease. Mol Cell Biol 19: 989–1001

    PubMed  CAS  Google Scholar 

  • Jans DA, Hubner S (1996) Regulation of protein transport to the nucleus: central role of phosphorylation. Physiol Rev 76: 651–685

    PubMed  CAS  Google Scholar 

  • Jauniaux JC, Grenson M (1990) GAP1, the general amino acid permease gene of Saccharomyces cerevisiae. Nucleotide sequence, protein similarity with the other baker’s yeast amino acid permeases, and nitrogen catabolite repression. Eur J Biochem 190: 39–44

    Google Scholar 

  • Jauniaux JC, Vandenbol M, Vissers S, Broman K, Grenson M (1987) Nitrogen catabolite regulation of proline permease in Saccharomyces cerevisiae. Cloning of the PUT4 gene and study of PUT4 RNA levels in wild-type and mutant strains. Eur J Biochem 164: 60l - 606

    Google Scholar 

  • Jenuwein T, Allis CD (2001) Translating the histone code. Science 293: 1074–1080

    PubMed  CAS  Google Scholar 

  • Jia MH, Larossa RA, Lee JM, Rafalski A, Derose E, Gonye G, Xue Z (2000) Global expression profiling of yeast treated with an inhibitor of amino acid biosynthesis, sulfometuron methyl. Physiol Genom 3: 83–92

    CAS  Google Scholar 

  • Jiang Y, Broach JR (1999) Tor proteins and protein phosphatase 2 A reciprocally regulate Tap42 in controlling cell growth in yeast. EMBO J 18: 2782–2792

    PubMed  CAS  Google Scholar 

  • John M, Leppik R, Busch SJ, Granger-Schnarr M, Schnarr M (1996) DNA binding of Jun and Fos blip domains: homodimers and heterodimers induce a DNA conformational change in solution. Nucleic Acids Res 24: 4487–4494

    PubMed  CAS  Google Scholar 

  • Jorgensen MU, Bruun MB, Didion T, Kielland-Brandt MC (1998) Mutations in five loci affecting GAP1independent uptake of neutral amino acids in yeast. Yeast 14: 103–114

    PubMed  CAS  Google Scholar 

  • Käfer E (1977) The anthranilate synthetase enzyme complex and the trifunctional trpC gene of Aspergillus. Can J Genet Cytol 19: 723–738

    PubMed  Google Scholar 

  • Kaffman A, O’Shea EK (1999) Regulation of nuclear localization: a key to a door. Annu Rev Cell Dev Biol 15: 291–339

    PubMed  CAS  Google Scholar 

  • Kaffman A, Rank NM, O’Neill EM, Huang LS, O’Shea EK (1998) The receptor MsnS exports the phosphorylated transcription factor Pho4 out of the nucleus. Nature 396: 482–486

    PubMed  CAS  Google Scholar 

  • Khochbin S, Kao HY (2001) Histone deacetylase complexes: functional entities or molecular reservoirs. FEBS Lett 494: 141–144

    PubMed  CAS  Google Scholar 

  • Kiss-Laszlo Z, Henry Y, Bachellerie JP, Caizergues-Ferrer M, Kiss T (1996) Site-specific ribose methylation of preribosomal RNA: a novel function for small nucleolar RNAs. Cell 85: 1077–1088

    PubMed  CAS  Google Scholar 

  • Klasson H, Fink GR, Ljungdahl PO (1999) Ssylp and Ptr3p are plasma membrane components of a yeast system that senses extracellular amino acids. Mol Cell Biol 19: 5405–5416

    PubMed  CAS  Google Scholar 

  • Klionsky DJ, Emr SD (2000) Autophagy as a regulated pathway of cellular degradation. Science 290: 17171721

    Google Scholar 

  • Klionsky DJ, Herman PK, Emr SD (1990) The fungal vacuole: composition, function, and biogenesis. Microbiol Rev 54: 266–292

    PubMed  CAS  Google Scholar 

  • Klopotowski T, Wiater A (1965) Synergism of aminotriazole and phosphate on the inhibition of yeast imidazole glycerol phosphate dehydratase. Arch Biochem Biophys 112: 562–566

    PubMed  CAS  Google Scholar 

  • Kolanus J, Michalczyk J, Flint HI, Barthelmess IB (1990) Restricted activation of general amino acid control under conditions of glutamine limitation in Neurospora crassa. Mol Gen Genet 223: 443–448

    PubMed  CAS  Google Scholar 

  • Kornberg RD, Lorch Y (1991) Irresistible force meets immovable object: transcription and the nucleosome. Cell 67: 833–836

    PubMed  CAS  Google Scholar 

  • Kornitzer D, Raboy B, Kulka RG, Fink GR (1994) Regulated degradation of the transcription factor Gcn4. EMBO J 13: 6021–30

    PubMed  CAS  Google Scholar 

  • Krappmann S, Helmstaedt K, Gerstberger T, Eckert S, Hoffmann B, Hoppert M, Schnappauf G, Braus GH (1999) The aroC gene of Aspergillus nidulans codes for a monofunctional, allosterically regulated chorismate mutase. J Biol Chem 274: 22275–22282

    PubMed  CAS  Google Scholar 

  • Krappmann S, Lipscomb WN, Braus GH (2000a) Coevolution of transcriptional and allosteric regulation at the chorismate metabolic branch point of Saccharomyces cerevisiae. Proc Natl Acad Sci USA 97: 13585–13590

    PubMed  CAS  Google Scholar 

  • Krappmann S, Pries R, Gellissen G, Hiller M, Braus GH (2000b) HARO7 encodes chorismate mutase of the methylotrophic yeast Hansenula polymorpha and is derepressed upon methanol utilization. J Bacteriol 182: 4188–4197

    Google Scholar 

  • Krüger D, Koch J, Barthelmess IB (1990) cpc-2, a new locus involved in general control of amino acid synthetic enzymes in Neurospora crassa. Curr Genet 18: 211–215

    Google Scholar 

  • Kubota H, Sakaki Y, Ito T (2000) GI domain-mediated association of the eukaryotic initiation factor 2alpha kinase GCN2 with its activator GCN1 is required for general amino acid control in budding yeast. J Biol Chem 275: 20243–20246

    PubMed  CAS  Google Scholar 

  • Kubota H, Ota K, Sakaki Y, Ito T (2001) Budding yeast GCN1 binds the GI domain to activate the elF2alpha kinase GCN2. J Biol Chem 276: 17591–17596

    PubMed  CAS  Google Scholar 

  • Kuo MH, Zhou J, Jambeck P, Churchill ME, Allis CD (1998) Histone acetyltransferase activity of yeast Gcn5p is required for the activation of target genes in vivo. Genes Dev 12: 627–639

    PubMed  CAS  Google Scholar 

  • Landschulz WH, Johnson PF, McKnight SL (1988) The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science 240: 1759–1764

    PubMed  CAS  Google Scholar 

  • Lanker S, Bushman JL, Hinnebusch AG, Trachsel H, Mueller PP (1992) Autoregulation of the yeast lysyltRNA synthetase gene GCD5/KRSI by translational and transcriptional control mechanisms. Cell 70: 647–657

    PubMed  CAS  Google Scholar 

  • Link AJ, Eng J, Schieltz DM, Carmack E, Mize GJ, Morris DR, Garvik BM, Yates JR III (1999) Direct analysis of protein complexes using mass spectrometry. Nat Biotechnol 17: 676–682

    PubMed  CAS  Google Scholar 

  • Lorch Y, Cairns BR, Zhang M, Kornberg RD (1998) Activated RSC-nucleosome complex and persistently altered form of the nucleosome. Cell 94: 29–34

    PubMed  CAS  Google Scholar 

  • Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8A resolution. Nature 389: 251–260

    PubMed  CAS  Google Scholar 

  • Marbach I, Licht R, Frohnmeyer H, Engelberg D (2001) Gcn2 mediates Gcn4 activation in response to glucose stimulation or UV radiation not via GCN4 translation. J Biol Chem 276: 16944–16951

    PubMed  CAS  Google Scholar 

  • Marton MJ, Crouch D, Hinnebusch AG (1993) GCN1, a translational activator of GCN4 in Saccharomyces cerevisiae, is required for phosphorylation of eukaryotic translation initiation factor 2 by protein kinase GCN2. Mol Cell Biol 13: 3541–3556

    PubMed  CAS  Google Scholar 

  • Marzluf GA (1996) Regulation of nitrogen metabolism in mycelial fungi. In: Esser K, Lemke PA (eds) The Mycota. Springer, Berlin Heidelberg New York, pp 357–368

    Google Scholar 

  • Maxwell ES, Fournier MJ (1995) The small nucleolar RNAs. Annu Rev Biochem 64: 897–934

    PubMed  CAS  Google Scholar 

  • Measday V, Moore L, Retnakaran R, Lee J, Donoviel M, Neiman AM, Andrews B (1997) A family of cyclin-like proteins that interact with the Pho85 cyclindependent kinase. Mol Cell Biol 17: 1212–1223

    PubMed  CAS  Google Scholar 

  • Meimoun A, Holtzman T, Weissman Z, McBride HJ, Stillman DJ, Fink GR, Kornitzer D (2000) Degradation of the transcription factor Gcn4 requires the kinase Pho85 and the SCF(CDC4) ubiquitin-ligase complex. Mol Biol Cell 11: 915–927

    PubMed  CAS  Google Scholar 

  • Mendenhall MD, Hodge AE (1998) Regulation of Cdc28 cyclin-dependent protein kinase activity during the cell cycle of the yeast Saccharomyces cerevisiae. Microbiol Mol Biol Rev 62: 1191–1243

    CAS  Google Scholar 

  • Minehart PL, Magasanik B (1992) Sequence of the GLNI gene of Saccharomyces cerevisiae: role of the upstream region in regulation of glutamine synthetase expression. J Bacteriol 174: 1828–1836

    PubMed  CAS  Google Scholar 

  • Mirande M, Waller JP (1988) The yeast lysyl-tRNA synthetase gene. Evidence for general amino acid control of its expression and domain structure of the encoded protein. J Biol Chem 263: 18443–18451

    Google Scholar 

  • Morillon A, Benard L, Springer M, Lesage P (2002) Differential effects of chromatin and Gcn4 on the 50-fold range of expression among individual yeast Tyl retro-transposons. Mol Cell Biol 22: 2078–2088

    PubMed  CAS  Google Scholar 

  • Mösch HU, Scheier B, Lahti R, Mantsala P, Braus GH (1991) Transcriptional activation of yeast nucleotide biosynthetic gene ADE4 by GCN4. J Biol Chem 266: 20453–20456

    PubMed  Google Scholar 

  • Mueller PP, Hinnebusch AG (1986) Multiple upstream AUG codons mediate translational control of GCN4. Cell 45: 201–207

    PubMed  CAS  Google Scholar 

  • Natarajan K, Jackson BM, Zhou H, Winston F, Hinnebusch AG (1999) Transcriptional activation by Gcn4p involves independent interactions with the SWI/SNF complex and the SRB/mediator. Mol Cell 4: 657–664

    PubMed  CAS  Google Scholar 

  • Natarajan K, Meyer MR, Jackson BM, Slade D, Roberts C, Hinnebusch AG, Marton MJ (2001) Transcriptional profiling shows that Gcn4p is a master regulator of gene expression during amino acid starvation in yeast. Mol Cell Biol 21: 4347–4368

    PubMed  CAS  Google Scholar 

  • Neely KE, Hassan AH, Wallberg AE, Steger DJ, Cairns BR, Wright AP, Workman JL (1999) Activation domain-mediated targeting of the SWI/SNF complex to promoters stimulates transcription from nucleosome arrays. Mol Cell 4: 649–655

    PubMed  CAS  Google Scholar 

  • Neely KE, Hassan AH, Brown CE, Howe L, Workman JL (2002) Transcription activator interactions with multiple SWI/SNF subunits. Mol Cell Biol 22: 1615–1625

    PubMed  CAS  Google Scholar 

  • Niederberger P, Miozzari G, Hütter R (1981) Biological role of the general control of amino acid biosynthesis in Saccharomyces cerevisiae. Mol Cell Biol 1: 584–593

    PubMed  CAS  Google Scholar 

  • Noctor G, Novitskaya L, Lea PJ, Foyer CH (2002) Coordination of leaf minor amino acid contents in crop species: significance and interpretation. J Exp Bot 53: 939–945

    PubMed  CAS  Google Scholar 

  • Noda T, Ohsumi Y (1998) Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast. J Biol Chem 273: 3963–3966

    PubMed  CAS  Google Scholar 

  • Noll M, Kornberg RD (1977) Action of micrococcal nuclease on chromatin and the location of histone Hl. J Mol Biol 109: 393–404

    PubMed  CAS  Google Scholar 

  • Ogrydziak DM (1993) Yeast extracellular proteases. Crit Rev Biotechnol 13: 1–55

    PubMed  CAS  Google Scholar 

  • Oliphant AR, Brandl CJ, Struhl K (1989) Defining the sequence specificity of DNA-binding proteins by selecting binding sites from random-sequence oligonucleotides: analysis of yeast GCN4 protein. Mol Cell Biol 9: 2944–2949

    PubMed  CAS  Google Scholar 

  • Pabo CO, Sauer RT (1992) Transcription factors: structural families and principles of DNA recognition. Annu Rev Biochem 61: 1053–1095

    PubMed  CAS  Google Scholar 

  • Pain VM (1996) Initiation of protein synthesis in eukaryotic cells. Eur J Biochem 236: 747–771

    PubMed  CAS  Google Scholar 

  • Paluh JL, Yanofsky C (1991) Characterization of Neuro-spora CPC1, a bZIP DNA-binding protein that does not require aligned heptad leucines for dimerization. Mol Cell Biol 11: 935–944

    PubMed  CAS  Google Scholar 

  • Paluh JL, Orbach MJ, Legerton TL, Yanofsky C (1988) The cross-pathway control gene of Neurospora crassa, cpc1, encodes a protein similar to GCN4 of yeast and the DNA-binding domain of the oncogene v-jun-encoded protein. Proc Natl Acad Sci USA 85: 3728–3732

    PubMed  CAS  Google Scholar 

  • Pavitt GD, Yang W, Hinnebusch AG (1997) Homologous segments in three subunits of the guanine nucleotide exchange factor eIF2B mediate translational regulation by phosphorylation of eIF2. Mol Cell Biol 17: 1298–1313

    PubMed  CAS  Google Scholar 

  • Pavitt GD, Ramaiah KV, Kimball SR, Hinnebusch AG (1998) eIF2 independently binds two distinct eIF2B subcomplexes that catalyze and regulate guanine-nucleotide exchange. Genes Dev 12: 514–526

    Google Scholar 

  • Pavlukova EB, Belozersky MA, Dunaevsky YE (1998) Extra-cellular proteolytic enzymes of filamentous fungi. Biochemistry (Mosc) 63: 899–928

    CAS  Google Scholar 

  • Peng T, Golub TR, Sabatini DM (2002) The immunosuppressant rapamycin mimics a starvation-like signal distinct from amino acid and glucose deprivation. Mol Cell Biol 22: 5575–5584

    PubMed  CAS  Google Scholar 

  • Piotrowska M, Kruszewska A, Paszewski A (1980) Effect of regulatory mutations of sulphur metabolism on the levels of cysteine-and homocysteine-synthesizing enzymes in Neurospora crassa. Acta Biochim Pol 27: 395–403

    PubMed  CAS  Google Scholar 

  • Pries R, Bömeke K, Irniger S, Grundmann O, Braus GH (2002) Amino acid-dependent Gcn4p stability regulation occurs exclusively in the yeast nucleus. Euk Cell 1: 663–672

    CAS  Google Scholar 

  • Qiu H, Hu C, Anderson J, Bjork GR, Sarkar S, Hopper AK, Hinnebusch AG (2000) Defects in tRNA processing and nuclear export induce GCN4 translation independently of phosphorylation of the alpha subunit of eukaryotic translation initiation factor 2. Mol Cell Biol 20: 2505–2516

    PubMed  CAS  Google Scholar 

  • Qiu H, Dong J, Hu C, Francklyn CS, Hinnebusch AG (2001) The tRNA-binding moiety in GCN2 contains a dimerization domain that interacts with the kinase domain and is required for tRNA binding and kinase activation. EMBO J 20: 1425–1438

    PubMed  CAS  Google Scholar 

  • Qiu H, Hu C, Dong J, Hinnebusch AG (2002) Mutations that bypass tRNA binding activate the intrinsically defective kinase domain in GCN2. Genes Dev 16: 12711280

    Google Scholar 

  • Qu LH, Henry Y, Nicoloso M, Michot B,Azum MC, Renalier MH, Caizergues-Ferrer M, Bachellerie JP (1995) U24, a novel intron-encoded small nucleolar RNA with two 12 nt long, phylogenetically conserved complementarities to 28S rRNA. Nucleic Acids Res 23: 2669–2676

    CAS  Google Scholar 

  • Quinn J, Fyrberg AM, Ganster RW, Schmidt MC, Peterson CL (1996) DNA-binding properties of the yeast SWI/SNF complex. Nature 379: 844–847

    PubMed  CAS  Google Scholar 

  • Rechsteiner M, Rogers SW (1996) PEST sequences and regulation by proteolysis. Trends Biochem Sci 21: 267–271

    PubMed  CAS  Google Scholar 

  • Regenberg B, During-Olsen L, Kielland-Brandt MC, Holmberg S (1999) Substrate specificity and gene expression of the amino-acid permeases in Saccharomyces cerevisiae. Curr Genet 36: 317–328

    PubMed  CAS  Google Scholar 

  • Roberg KJ, Bickel S, Rowley N, Kaiser CA (1997) Control of amino acid permease sorting in the late secretory pathway of Saccharomyces cerevisiae by SEC13, LST4, LST7 and LST8. Genetics 147: 1569–1584

    PubMed  CAS  Google Scholar 

  • Rolfes RJ, Hinnebusch AG (1993) Translation of the yeast transcriptional activator GCN4 is stimulated by purine limitation: implications for activation of the protein kinase GCN2. Mol Cell Biol 13: 5099–5111

    PubMed  CAS  Google Scholar 

  • Ron D, Chen CH, Caldwell J, Jamieson L, Orr E, MochlyRosen D (1994) Cloning of an intracellular receptor for protein kinase C: a homolog of the beta subunit of G proteins. Proc Natl Acad Sci USA 91: 839–843

    PubMed  CAS  Google Scholar 

  • Ron D, Luo J, Mochly-Rosen D (1995) C2 region-derived peptides inhibit translocation and function of beta protein kinase C in vivo. J Biol Chem 270: 24180–24187

    PubMed  CAS  Google Scholar 

  • Roth SY, Denu JM, Allis CD (2001) Histone acetyltransferases. Annu Rev Biochem 70: 81–120

    PubMed  CAS  Google Scholar 

  • Rowlands AG, Panniers R, Henshaw EC (1988) The catalytic mechanism of guanine nucleotide exchange factor action and competitive inhibition by phosphorylated eukaryotic initiation factor 2. J Biol Chem 263: 5526–5533

    PubMed  CAS  Google Scholar 

  • Sachs MS (1996) General and cross-pathway controls of amino acid biosynthesis. In: Esser K, Lemke PA (eds) The Mycota. Springer, Berlin Heidelberg New York, pp 315–345

    Google Scholar 

  • Sattlegger E, Hinnebusch AG, Barthelmess IB (1998) cpc-3, the Neurospora crassa homologue of yeast GCN2, encodes a polypeptide with juxtaposed elF2alpha kinase and histidyl-tRNA synthetase-related domains required for general amino acid control. J Biol Chem 273: 20404–20416

    Google Scholar 

  • Sattlegger E, Hinnebusch AG (2000) Separate domains in GCN1 for binding protein kinase GCN2 and ribosomes are required for GCN2 activation in amino acid-starved cells. EMBO J 19: 6622–6633

    PubMed  CAS  Google Scholar 

  • Schmidheini T, Mösch HU, Graf R, Braus GH (1990) A GCN4 protein recognition element is not sufficient for GCN4-dependent regulation of transcription in the ARO7 promoter of Saccharomyces cerevisiae. Mol Gen Genet 224: 57–64

    PubMed  CAS  Google Scholar 

  • Schmidt A, Beck T, Koller A, Kunz J, Hall MN (1998) The TOR nutrient signalling pathway phosphorylates NPR1 and inhibits turnover of the tryptophan permease. EMBO J 17: 6924–6931

    PubMed  CAS  Google Scholar 

  • Schnappauf G, Hartmann M, Künzler M, Braus GH (1998) The two 3-deoxy-D-arabino-heptulosonate-7phosphate synthase isoenzymes from Saccharomyces cerevisiae show different kinetic modes of inhibition. Arch Microbiol 169: 517–524

    PubMed  CAS  Google Scholar 

  • Schreve JL, Sin JK, Garrett JM (1998) The Saccharomyces cerevisiae YCC5 (YCL025c) gene encodes an amino acid permease, Agpl, which transports asparagine and glutamine. J Bacteriol 180: 2556–2559

    Google Scholar 

  • Schürch A, Miozzari J, Hütter R (1974) Regulation of tryptophan biosynthesis in Saccharomyces cerevisiae: mode of action of 5-methyl-tryptophan and 5methyl-tryptophan-sensitive mutants. J Bacteriol 117: 1131–1140

    PubMed  Google Scholar 

  • Scorsone KA, Panniers R, Rowlands AG, Henshaw EC (1987) Phosphorylation of eukaryotic initiation factor 2 during physiological stresses which affect protein synthesis. J Biol Chem 262: 14538–14543

    PubMed  CAS  Google Scholar 

  • Serlupi-Crescenzi O, Kurtz MB, Champe SP (1983) Developmental defects resulting from arginine auxotrophy in Aspergillus nidulans. J Gen Microbiol 129: 3535–3544

    PubMed  CAS  Google Scholar 

  • Shaw BR, Herman TM, Kovacic RT, Beaudreau GS, Van Holde KE (1976) Analysis of subunit organization in chicken erythrocyte chromatin. Proc Natl Acad Sci USA 73: 505–509

    PubMed  CAS  Google Scholar 

  • Shemer R, Meimoun A, Holtzman T, Kornitzer D (2002) Regulation of the transcription factor Gcn4 by Pho85 cyclin PCL5. Mol Cell Biol 22: 5395–5404

    PubMed  CAS  Google Scholar 

  • Shi Y, Vattern KM, Sood R, An J, Liang J, Stramm L, Wek RC (1998) Identification and characterization of pancreatic eukaryotic initiation factor 2 alpha-subunit kinase, PEK, involved in translational control. Mol Cell Biol 18: 7499–7509

    Google Scholar 

  • Sood R, Porter AC, Ma K, Quilliam LA, Wek RC (2000) Pancreatic eukaryotic initiation factor-2alpha kinase (PEK) homologues in humans, Drosophila melanogaster and Caenorhabditis elegans that mediate translational control in response to endoplasmic reticulum stress. Biochem J 346 (2): 281–293

    PubMed  CAS  Google Scholar 

  • Souciet J, Aigle M, Artiguenave F, Blandin G, BolotinFukuhara M, Bon E, Brottier P, Casaregola S, de Montigny J, Dujon B, Durrens P, Gaillardin C, Lepingle A, Llorente B, Malpertuy A, Neuveglise C, Ozier-Kalogeropoulos O, Potier S, Saurin W, Tekaia F, Toffano-Nioche C, Wesolowski-Louvel M, Wincker P, Weissenbach J (2000) Genomic exploration of the hemiascomycetous yeasts: 1. A set of yeast species for molecular evolution studies. FEBS Lett 487: 3–12

    Google Scholar 

  • Springer C, Künzler M, Balmelli T, Braus GH (1996) Amino acid and adenine cross-pathway regulation act through the same 5’-TGACTC-3’ motif in the yeast HIS7 promoter. J Biol Chem 271: 29637–29643

    PubMed  CAS  Google Scholar 

  • Stanbrough M, Magasanik B (1995) Transcriptional and posttranslational regulation of the general amino acid permease of Saccharomyces cerevisiae. J Bacteriol 177: 94–102

    PubMed  CAS  Google Scholar 

  • Strittmatter AW, Irniger S, Braus GH (2001) Induction of j1bA mRNA synthesis for a putative bZIP protein of Aspergillus nidulans by amino acid starvation. Curr Genet 39: 327–334

    PubMed  CAS  Google Scholar 

  • Takemaru K, Harashima S, Ueda H, Hirose S (1998) Yeast coactivator MBF1 mediates GCN4-dependent transcriptional activation. Mol Cell Biol 18: 49714976

    Google Scholar 

  • Thomas D, Surdin-Kerjan Y (1997) Metabolism of sulfur amino acids in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 61: 503–532

    PubMed  CAS  Google Scholar 

  • Thumm M (2000) Structure and function of the yeast vacuole and its role in autophagy. Microsc Res Tech 51: 563–572

    PubMed  CAS  Google Scholar 

  • Triana-Alonso FJ, Chakraburtty K, Nierhaus KH (1995) The elongation factor 3 unique in higher fungi and essential for protein biosynthesis is an E site factor. J Biol Chem 270: 20473–20478

    CAS  Google Scholar 

  • Tullin S, Gjermansen C, Kielland-Brandt MC (1991) A high-affinity uptake system for branched-chain amino acids in Saccharomyces cerevisiae. Yeast 7: 933–941

    PubMed  CAS  Google Scholar 

  • Turner BM (2000) Histone acetylation and an epigenetic code. Bioessays 22: 836–845

    PubMed  CAS  Google Scholar 

  • Turner R, Tjian R (1989) Leucine repeats and an adjacent DNA binding domain mediate the formation of functional cFos-cJun heterodimers. Science 243: 1689–1694

    PubMed  CAS  Google Scholar 

  • Tzamarias D, Roussou I, Thireos G (1989) Coupling of GCN4 mRNA translational activation with decreased rates of polypeptide chain initiation. Cell 57: 947–954

    PubMed  CAS  Google Scholar 

  • Valenzuela L, Aranda C, Gonzalez A (2001) TOR modulates GCN4-dependent expression of genes turned on by nitrogen limitation. J Bacteriol 183: 2331–2334

    PubMed  CAS  Google Scholar 

  • Valerius O, Draht O, Kübler E, Adler K, Hoffmann B, Braus GH (2001) Regulation of hisHF transcription of Aspergillus nidulans by adenine and amino acid limitation. Fungal Genet Biol 32: 21–31

    PubMed  CAS  Google Scholar 

  • Wang P, Larson TG, Chen CH, Pawlyk DM, Clark JA, Nuss DL (1998) Cloning and characterization of a general amino acid control transcriptional activator from the chestnut blight fungus Cryphonectria parasitica. Fungal Genet Biol 23: 81–94

    PubMed  CAS  Google Scholar 

  • Wanke C, Eckert S, Albrecht G, van Hartingsveldt W, Punt PJ, van den Hondel CA, Braus GH (1997) The Aspergillus niger GCN4 homologue, cpcA, is transcriptionally regulated and encodes an unusual leucine zipper. Mol Microbiol 23: 23–33

    PubMed  CAS  Google Scholar 

  • Weiss MA, Ellenberger T, Wobbe CR, Lee JP, Harrison SC, Struhl K (1990) Folding transition in the DNA-binding domain of GCN4 on specific binding to DNA. Nature 347: 575–578

    PubMed  CAS  Google Scholar 

  • Wek RC, Jackson BM, Hinnebusch AG (1989) Juxtaposition of domains homologous to protein kinases and histidyl-tRNA synthetases in GCN2 protein suggests a mechanism for coupling GCN4 expression to amino acid availability. Proc Natl Acad Sci USA 86: 45794583

    Google Scholar 

  • Wek SA, Zhu S, Wek RC (1995) The histidyl-tRNA synthetase-related sequence in the eIF-2 alpha protein kinase GCN2 interacts with tRNA and is required for activation in response to starvation for different amino acids. Mol Cell Biol 15: 4497–4506

    PubMed  CAS  Google Scholar 

  • Wiemken A, Durr M (1974) Characterization of amino acid pools in the vacuolar compartment of Saccharomyces cerevisiae. Arch Microbiol 101: 45–57

    PubMed  CAS  Google Scholar 

  • Yang R, Wek SA, Wek RC (2000) Glucose limitation induces GCN4 translation by activation of Gcn2 protein kinase. Mol Cell Biol 20: 2706–2717

    PubMed  CAS  Google Scholar 

  • Yelton MM, Hamer JE, de Souza ER, Mullaney EJ, Timberlake WE (1983) Developmental regulation of the Aspergillus nidulans trpC gene. Proc Natl Acad Sci USA 80: 7576–7580

    PubMed  CAS  Google Scholar 

  • Yudkovsky N, Logie C, Hahn S, Peterson CL (1999) Recruitment of the SWI/SNF chromatin remodeling complex by transcriptional activators. Genes Dev 13: 2369–2374

    PubMed  CAS  Google Scholar 

  • Zhang Y, Reinberg D (2001) Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev 15: 2343–2360

    PubMed  CAS  Google Scholar 

  • Zheng N, Schulman BA, Song L, Miller JJ, Jeffrey PD, Wang P, Chu C, Koepp DM, Elledge SJ, Pagano M, Conaway RC, Conaway JW, Harper JW, Pavletich NP (2002) Structure of the Cull-Rbxl-Skpl-F boxSkp2 SCF ubiquitin ligase complex. Nature 416: 703–709

    PubMed  CAS  Google Scholar 

  • Zhou K, Brisco PR, Hinkkanen AE, Kohlhaw GB (1987) Structure of yeast regulatory gene LEU3 and evidence that LEU3 itself is under general amino acid control. Nucleic Acids Res 15: 5261–5273

    PubMed  CAS  Google Scholar 

  • Zhu S, Sobolev AY, Wek RC (1996) Histidyl-tRNA synthetase-related sequences in GCN2 protein kinase regulate in vitro phosphorylation of eIF-2. J Biol Chem 271: 24989–24994

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Braus, G.H., Pries, R., Düvel, K., Valerius, O. (2004). Molecular Biology of Fungal Amino Acid Biosynthesis Regulation. In: Kück, U. (eds) Genetics and Biotechnology. The Mycota, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-07426-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-07426-8_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07667-1

  • Online ISBN: 978-3-662-07426-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics