On Wave Dynamics Pertaining to Structures with Aperiodic Order

  • Vincenzo Galdi
  • Vincenzo Pierro
  • Giuseppe Castaldi
  • Vincenzo Fiumara
  • Innocenzo M. Pinto
  • Leopold B. Felsen
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 97)


Interactions of electromagnetic (EM) waves with either perfectly periodic or randomly disordered structures are problems of longstanding interest, with many applications. For instance, periodic structures are encountered in a variety of applications in modern EM engineering, such as phased arrays, frequency selective surfaces and photonic band-gap devices, whereas random geometries have been utilized for effective statistical modeling in applications like remote sensing, and propagation in turbulent media and urban environments. Thus, a number of theoretical and computational tools have been developed to characterize wave phenomenologies at the two extremes of the “order” scale, but much less is known about the wave dynamics associated with geometries in the “gray zone” in between (with the possible exception of fractal geometries which have found many applications in EM engineering).


Antenna Array Radiation Spectrum Periodic Array Frequency Selective Surface Substitution Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shechtman D, et al (1984) Phys Rev Lett 53: 1951–1953ADSCrossRefGoogle Scholar
  2. 2.
    Levine D, Steinhardt PJ (1984) Phys Rev Lett 53: 2477–2480ADSCrossRefGoogle Scholar
  3. 3.
    Grünbaum B, Shepard GC (1987) Tilings and patterns. Freeman, New YorkzbMATHGoogle Scholar
  4. 4.
    Senechal M (1995) Quasicrystals and geometry. Cambridge University Press, Cambridge, UKzbMATHGoogle Scholar
  5. 5.
    Pierro V, et al. (2004). Accepted for publication in IEEE Trans Antennas PropagatGoogle Scholar
  6. 6.
    Baake M (2002) A guide to mathematical quasicrystals. In Suck JB, Schreiber M, Häussler P (eds) Quasicrystals: an introduction to structure, physical properties, and applications. Springer, BerlinGoogle Scholar
  7. 7.
    Grimm U, Schreiber M (2002) Aperiodic tilings on the computer. In Suck JB, Schreiber M, Häussler P (eds) Quasicrystals: an introduction to structure, physical properties, and applications. Springer, BerlinGoogle Scholar
  8. 8.
  9. 9.
    Radin C (1999), J Stat Phys 95: 827–833MathSciNetADSzbMATHCrossRefGoogle Scholar
  10. 10.
    Chan YS, et al (1998) Phys Rev Lett 80: 956–959ADSCrossRefGoogle Scholar
  11. 11.
    Maciâ E (1998) Appl Phys Lett 73: 3330–3332ADSCrossRefGoogle Scholar
  12. 12.
    Jin C, et al (1999) Appl Phys Lett 75: 1848–1850ADSCrossRefGoogle Scholar
  13. 13.
    Jin C, et al (2000) Phys Rev B16: 10762–10767Google Scholar
  14. 14.
    Kaliteevski MA, et al (2000) J Mod Opt 47: 1771–1778ADSGoogle Scholar
  15. 15.
    Zhang X, et al (2001) Phys Rev B63: 081105(R)Google Scholar
  16. 16.
    Bayndir M, et al (2001) Phys Rev B63: 161104(R)Google Scholar
  17. 17.
    Bayndir M, et al (2001) Europhys Lett 56: 41–46ADSCrossRefGoogle Scholar
  18. 18.
    Hase M, et al (2002) Phys Rev B66: 214205Google Scholar
  19. 19.
    Ouyang Z, et al (2002) J Opt A: Pure Appl Opt 4: 23–28ADSCrossRefGoogle Scholar
  20. 20.
    Steinberg BD (1973) IEEE Trans Antennas Propagat 21: 366–370ADSCrossRefGoogle Scholar
  21. 21.
    Buczek et al (2003) preprint cond-mat/0309008Google Scholar
  22. 22.
    Papoulis A (1962) The Fourier integral and its applications. McGraw-Hill, New YorkzbMATHGoogle Scholar
  23. 23.
    Felsen LB, Capolino F (2000) IEEE Trans. Antennas Propagat 48: 921–931ADSCrossRefGoogle Scholar
  24. 24.
    Capolino F, Felsen LB (2002) IEEE Trans. Antennas Propagat 50: 31–41ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Vincenzo Galdi
    • 1
  • Vincenzo Pierro
    • 1
  • Giuseppe Castaldi
    • 1
  • Vincenzo Fiumara
    • 2
  • Innocenzo M. Pinto
    • 1
  • Leopold B. Felsen
    • 3
    • 4
  1. 1.Waves Group, Department of EngineeringUniversity of SannioBeneventoItaly
  2. 2.D.I.I.I.EUniversity of SalernoFisciano (SA)Italy
  3. 3.Department of Aerospace and Mechanical EngineeringBoston UniversityBostonUSA
  4. 4.Polytechnic UniversityBrooklynUSA

Personalised recommendations