• R. Molina
  • J. M. Trappe
  • L. C. Grubisha
  • J. W. Spatafora


Rhizopogon is the largest genus of hypogeous Basidiomycota, with worldwide distribution among Pinaceae. Several Rhizopogon species are important members of ectomycorrhizal (ECM) fungal communities, contributing significantly to sporocarp productivity and ECM dominance. They occur in young and old forest stands alike and in diverse habitats. This ecological amplitude was recognized early in the twentieth century when Rhizopogon species were observed as dominant ECM fungi on Pinus in exotic plantations. Consequently, Rhizopogon has been the focus of considerable application research in forestry. The ease of culturing from sporocarps, manipulation of pure cultures of Rhizopogon and practical use of spore inoculation has made Rhizopogon a model genus to explore morphological, physiological, ecological, and symbiotic mutualisms of ECM. Nearly 200 papers have been published on Rhizopogon taxonomy, host range and specificity, ECM morphology, distribution, ecology, physiology, and applications in forestry.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abuzinadah RA, Read DJ (1986a) The role of proteins in the nitrogen nutrition of ectomycorrhizal plants. I. Utilization of peptides and proteins by ectomycorrhizal fungi. New Phytol 103: 481–493Google Scholar
  2. Abuzinadah RA, Read DJ (1986b) The role of proteins in the nitrogen nutrition of ectomycorrhizal plants. I. Utilization of protein by mycorrhizal plants of Pin us contorta. New Phytol 103: 495–506CrossRefGoogle Scholar
  3. Adams AJS (1951) A forest nursery for Pinus radiata at Mt Burr in the southeast of South Australia. Aust For 15: 47–56Google Scholar
  4. Agerer R (1990) Studies on ectomycorrhizae XXIV. Ectomycorrhizae of Chroogomphus helveticus and C. rutilus (Gomphidiaceae, Basidiomycetes) and their relationship to those of Suillus and Rhizopogon. Nova Hedwigia 50: 1–63Google Scholar
  5. Agerer R (1991) Studies on ectomycorrhizae XXXIV. Mycorrhizae of Gomphidius glutinosus and of G. roseus with some remarks on Gomphidiaceae (Basidiomycetes). Nova Hedwigia 53: 127–170Google Scholar
  6. Agerer R, Müller WR, Bahnweg G (1996) Ectomycorrhizae of Rhizopogon subcaerulescens on Tsuga heterophylla. Nova Hedwigia 63: 397–415Google Scholar
  7. Albertini IB, Schweiniz LD (1805) Conspectus fungorum in Lusatiae superioris. Sumtibus Kummerianis, Leipzig, GermanyGoogle Scholar
  8. Allen MF, Trappe JM, Horton TR (1999) Nats truffle and truffle-like fungi 8: Rhizopogon mengei sp. nov. (Boletaceae, Basidiomycota). Mycotaxon (in press)Google Scholar
  9. Alvarez IF, Linderman RG (1983) Effects of ethylene and fungicide dips during cold storage on root regeneration and survival of western conifers and their mycorrhizal fungi. Can J For Res 13: 962–971CrossRefGoogle Scholar
  10. Alvarez IF, Parladé J, Trappe JM, Castellano MA (1993) Hypogeous mycorrhizal fungi of Spain. Mycotaxon 47: 201–217Google Scholar
  11. Amaranthus MP, Perry DA (1989) Interaction effects of vegetation type and Pacific madrone soil inocula on survival, growth, and mycorrhiza formation of Douglas-fir. Can J For Res 19: 550–556CrossRefGoogle Scholar
  12. Baxter DV (1928) Mycorrhiza and Scotch pine in the University of Michigan forest nursery. Mich Acad Arts Sci Lett Pap 9: 509–516Google Scholar
  13. Birch TTC (1937) A synopsis of forest fungi of significance in New Zealand. N Z J For 4: 109–125Google Scholar
  14. Björkman E (1942) Über die Bedingungen der Mykorrhizabildung bei Kiefer und Fichte. Symb Bot Ups 6: 1–190Google Scholar
  15. Borchers SL, Perry DA (1990) Growth and ectomycorrhiza formation of Douglas-fir seedlings grown in soils collected at different distances from pioneering hardwoods in southwestern Oregon clearcuts. Can J For Res 20: 712–721CrossRefGoogle Scholar
  16. Bowen GD (1968) Phosphate uptake by mycorrhizas and uninfected roots of Pinus radiata in relation to root distribution. Trans 9th Congr Soil Sci 2: 219–228Google Scholar
  17. Bowen GD, Theodorou C (1967) Studies on phosphate uptake by mycorrhizas. 14th IUFRO Congr (Munich) 5: 116–138Google Scholar
  18. Bowen GD, Theodorou C (1979) Interactions between bacteria and ectomycorrhizal fungi. Soil Biol Biochem 11: 119–126CrossRefGoogle Scholar
  19. Brownlee CJ, Duddridge A, Malibari A, Read DJ (1983) The structure and function of mycelial systems of ectomycorrhizal roots with special reference to their role in forming inter-plant connections and providing pathways for assimilate and water transport. Plant Soil 71: 433–443CrossRefGoogle Scholar
  20. Bruns TD, Szaro TM (1992) Rate and mode differences between nuclear and mitochondrial small-subunit rRNA genes in mushrooms. Mol Biol Evol 9: 836–855PubMedGoogle Scholar
  21. Bruns TD, Fogel RD, White TJ, Palmer J (1989) Accelerated evolution of a false truffle from a mushroom ancestor. Nature 339: 140–142PubMedCrossRefGoogle Scholar
  22. Castellano MA (1985) Basidiospores of Rhizopogon vinicolor and Rhizopogon colossus as ectomycorrhizal inoculum. In: Molina R (ed) 6th North American Conf on Mycorrhiza. Forest Research Laboratory, Oregon State University, Corvallis, 11 ppGoogle Scholar
  23. Castellano MA (1987) Ectomycorrhizal inoculum production and utilization in the Pacific Northwestern US–a glimpse at the past, a look to the future. In: Sylvia DM, Hung LL, Graham JH (eds) 7th North American Conf on Mycorrhizae. Institute of Food and Agricultural Sciences, University of Florida, Gainsville, pp 290–291Google Scholar
  24. Castellano MA (1996) Outplanting performance of mycorrhizal inoculated seedlings. In: Mukerji KG (ed) Concepts in mycorrhizal research. Kluwer Dordrecht, pp 223–301Google Scholar
  25. Castellano MA, Molina R (1989) Mycorrhizae. In: Landis TD, Tinus RW, McDonald SE, Barnett JP (eds) The container tree nursery manual, vol 5, Agric Handb 674. US Department of Agriculture, Forest Service, Washington, DC, pp 101–167Google Scholar
  26. Castellano MA, Trappe JM (1985) Ectomycorrhizal formation and plantation performance of P. menziesii nursery stock inoculated with Rhizopogon spores. Can J For Res 15: 613–617CrossRefGoogle Scholar
  27. Castellano MA, Trappe JM, Molina R (1985) Inoculation of container-grown P. menziesii seedlings with basidiospores of Rhizopogon vinicolor and R. colossus: effects of fertility and spore application rate. Can J For Res 15: 10–13CrossRefGoogle Scholar
  28. Cdzares E, Garcia J, Castillo J, Trappe JM (1992) Hypogeous fungi from northern Mexico. Mycologia 84: 341–359CrossRefGoogle Scholar
  29. Câzares E, Luoma DL, Amaranthus MP, Chambers CL, Lehmkuhl JF (1999) Interaction of fungal sporocarp production with small mammal abundance and diet in Douglas-fir stands of the southern Cascade Range. Northwest Sci 73: 64–76Google Scholar
  30. Chilvers GA (1973) Host range of some eucalypt mycorrhizal fungi. Aust J Bot 21: 103–111CrossRefGoogle Scholar
  31. Chu-Chou M (1979) Mycorrhizal fungi of Pinus radiata in New Zealand. Soil Biol Biochem 11: 557–562CrossRefGoogle Scholar
  32. Chu-Chou M (1985) Effect of different mycorrhizal fungi on Pinus radiata seedling growth. In: Molina R (ed) 6th North American Conf on Mycorrhiza. Forest Research Laboratory, Oregon State University, Corvallis, 208 ppGoogle Scholar
  33. Chu-Chou M, Grace LJ (1981) Mycorrhizal fungi of Pseudotsuga menziesii in the North Island of New Zealand. Soil Biol Biochem 13: 247–249CrossRefGoogle Scholar
  34. Chu-Chou M, Grace LJ (1983a) Characterization and identification of mycorrhizas of Douglas-fir in New Zealand. Eur J For Pathol 13: 251–260CrossRefGoogle Scholar
  35. Chu-Chou M, Grace LJ (1983b) Characterization and identification of mycorrhizas of radiata pine in New Zealand. Aust For Res 13: 121–132Google Scholar
  36. Chu-Chou M, Grace LJ (1983c) Hypogeous fungi associated with some forest trees in New Zealand. N Z J Bot 21: 183–190CrossRefGoogle Scholar
  37. Chu-Chou M, Grace LJ (1984) Cultural characteristics of Rhizopogon spp. associated with Pinus radiata seedlings. N Z J Bot 22: 35–41CrossRefGoogle Scholar
  38. Chu-Chou M, Grace LJ (1985) Comparative efficiency of the mycorrhizal fungi Laccaria laccata, Hebeloma crustuliniforme, and Rhizopogon species on growth of radiata pine seedlings. N Z J Bot 23: 417–424CrossRefGoogle Scholar
  39. Cline ML, Reid PP (1982) Seed source and mycorrhizal fungus effects on growth of containerized Pinus contorta and Pinus ponderosa seedlings. For Sci 28: 237–250Google Scholar
  40. Coker WC, Couch JN (1928) The Gasteromycetes of the eastern United States and Canada. University of North Carolina Press, Chapel HillGoogle Scholar
  41. Colgan W III (1997) Diversity, productivity, and mycophagy of hypogeous mycorrhizal fungi in a variably thinned Douglas-fir forest. PhD Thesis, Oregon State University, CorvallisGoogle Scholar
  42. Crafts CB, Miller CO (1974) Detection and identification of cytokinins produced by mycorrhizal fungi. Plant Physiol 54: 586–588PubMedCrossRefGoogle Scholar
  43. Croghan CG (1984) Survey for mycorrhizal fungi in lake states tree nurseries. Mycologia 76: 951–953CrossRefGoogle Scholar
  44. Cullings KW, Szaro TM, Bruns TD (1996) Evolution of extreme specialization within a lineage of ectomycorrhizal epiparasites. Nature 379: 63–66CrossRefGoogle Scholar
  45. Donald DGM (1975) Mycorrhizal inoculation for pines. S Afr For J 92: 27–29Google Scholar
  46. Dosskey M, Boersma L, Linderman RG (1990) Role for photosynthate demand by ectomycorrhizas in the response of Douglas-fir seedlings to drying soil. New Phytol 117: 327–324CrossRefGoogle Scholar
  47. Duddridge JA (1986a) The development and ultrastructure of ectomycorrhizas. III. Compatible and incompatible interactions between Suillus grevillei (Klotzsch) Sing. and 11 species of ectomycorrhizal hosts in vitro in the absence of exogenous carbohydrate. New Phytol 103: 457–464CrossRefGoogle Scholar
  48. Duddridge JA (1986b) The development and ultrastructure of ectomycorrhizas. IV. Compatible and incompatible interactions between Suillus grevillei (Klotzsch) Sing. and a number of ectomycorrhizal hosts in vitro in the presence of exogenous carbohydrate. New Phytol 103: 465–471CrossRefGoogle Scholar
  49. Duddridge JA, Malibari A, Read DJ (1980) Structure and function of mycorrhizal rhizomorphs with special reference to their role in water transport. Nature 287: 834–836CrossRefGoogle Scholar
  50. Durall DM, Todd AW, Trappe JM (1994) Decomposition of “C-labeled substrates by ectomycorrhizal fungi in association with Douglas fir. New Phytol 127: 725–729CrossRefGoogle Scholar
  51. Ekwebelam SA (1980) Effect of mycorrhizal fungi on the growth and yield of Pinus oocarpa and Pinus caribaea var bahamensis seedlings. East Afr Agric For J 45: 290–295Google Scholar
  52. Ekwebelam SA, Odeyinde MA (1985) Field response of Pinus species inoculated with ectomycorrhizal fungi in Nigeria. In: Molina R (ed) 6th North American Conf on Mycorrhiza. Forest Research Laboratory, Oregon State University, Corvallis, 220 ppGoogle Scholar
  53. Finlay RD, Ek H, Odham G, Soderstrom B (1988) Mycelial uptake, translocation and assimilation of nitrogen from 15N-labeled ammonium by Pinus sylvestris plants infected with four different ectomycorrhizal fungi. New Phytol 110: 59–66CrossRefGoogle Scholar
  54. Fogel R (1976) Ecological studies of hypogeous fungi. II. Sporocarp phenology in a western Oregon Douglas fir stand. Can J Bot 54: 1152–1162CrossRefGoogle Scholar
  55. Fogel R (1980) Additions to the hypogeous mycoflora of the Canary Islands and Madeira. Contrib Univ Mich Herb 14: 75–82Google Scholar
  56. Fogel R, Trappe JM (1978) Fungus consumption (mycophagy) by small animals. Northwest Sci 52: 1–31Google Scholar
  57. Fontana A, Centrella E (1967) Ectomicorrize prodotte da funghi ipogei. Allionia 13:149–176 Ford VL, Torbert JL, Burger JA, Miller OK (1985) Comparative effects of four mycorrhizal fungiGoogle Scholar
  58. on loblolly pine seedlings growing in a greenhouse in a Piedmont soil. Plant Soil 83:215–221 Fries EM (1823) Systema mycologicum vol II. Greifswald, LundGoogle Scholar
  59. Froidevaux PL, Amiet R (1975) Synthèse en culture pure de l’association mycorrhizienne Pinus silvestris L. + Rhizopogon rubescens Tul. Eur J For Pathol 5: 53–57CrossRefGoogle Scholar
  60. Garrido N (1986) Survey of ectomycorrhizal fungi associated with exotic forest trees in Chile. Nova Hedwigia 43: 423–442Google Scholar
  61. Goodman DM, Trofymow JA (1998) Comparison of communities of ectomycorrhizal fungi in old-growth and mature stands of Douglas-fir at two sites on southern Vancouver Island. Can J For Res 28: 574–581CrossRefGoogle Scholar
  62. Goodman DM, Durral DM, Trofymow JA, Berch SM (eds) (1996) A manual of concise descriptions of North American ectomycorrhizae. Mycologue Publications, Sydney, British Columbia, CanadaGoogle Scholar
  63. Gross G, Runge A, Winterhoff W (1980) Bauchpilze ( Gasteromycetes S L) in der Bundesrepublik Deutschland and Westberlin. Z Mykol Beih 2: 1–220Google Scholar
  64. Grubisha L (1998) Systematics of the genus Rhizopogon inferred from nuclear ribosomal DNA large subunit and internal transcribed spacer sequences. Masters Thesis, Oregon State University, CorvallisGoogle Scholar
  65. Hacskaylo E (1973) Carbohydrate physiology of ectomycorrhizae. In: Marks GC, Kozlowski TT (eds) Ectomycorrhizae, their ecology and physiology. Academic Press, New York, pp 207–230Google Scholar
  66. Hacskaylo E, Palmer JG, Vozzo JA (1965) Effect of temperature on growth and respiration of ectotrophic mycorrhizal fungi. Mycologia 57: 748–756CrossRefGoogle Scholar
  67. Harrison KA, Smith AH (1968) Some new species and distribution records of Rhizopogon in North America. Can J Bot 46: 881–889CrossRefGoogle Scholar
  68. Haselwandter K, Ortwin B, Read DJ (1990) Degradation of “C-labeled lignin and dehydropolymer of coniferyl alcohol by ericoid and ectomycorrhizal fungi. Arch Microbiol 153: 352–354CrossRefGoogle Scholar
  69. Henderson GS, Stone EL (1970) Growth of mycorrhizal Monterey pine supplied with phosphorus fixed on perlite. In: Youngberg CT, Davey DB (eds) Tree growth and forest soils. Oregon State University Press, Corvallis, pp 171–180Google Scholar
  70. Ho I, Trappe JM (1980) Nitrate reductase activity of nonmycorrhizal Douglas-fir rootlets and of some associated mycorrhizal fungi. Plant Soil 54: 395–398CrossRefGoogle Scholar
  71. Ho I, Trappe JM (1987) Enzymes and growth substances of Rhizopogon species in relation to mycorrhizal hosts and infrageneric taxonomy. Mycologia 79: 553–558CrossRefGoogle Scholar
  72. Ho I, Zak B (1979) Acid phosphatase activity of six ectomycorrhizal fungi. Can J Bot 57: 1203–1205CrossRefGoogle Scholar
  73. Hodgson TJ (1979) Basidiospore inoculation of soil: the effect of application timing on Pinus elliottii seedling development. S Afr For J 108: 10–15Google Scholar
  74. Horton TR, Cazares E, Bruns TD (1998) Ectomycorrhizal, vesicular-arbuscular and dark septate fungal colonization of Bishop pine (Pinus muricata) seedlings in the first 5 months of growth after wildfire. Mycorrhiza 8: 11–18CrossRefGoogle Scholar
  75. Hosford DR (1972) Rhizopogon of the northwestern United States. PhD Thesis, University of Washington, SeattleGoogle Scholar
  76. Hosford DR (1975) Taxonomic studies on the genus Rhizopogon. I. Two new species from the Pacific Northwest. Beih Nova Hedwigia Kryptogamenkd 6: 163–169Google Scholar
  77. Hosford DR, Trappe JM (1980) Taxonomic studies on the genus Rhizopogon. II. Notes and new records of species from Mexico and Caribbean countries. Bol Soc Mex Micol 14: 3–15Google Scholar
  78. Hosford DR, Trappe JM (1988) A preliminary survey of Japanese species of Rhizopogon. Trans Mycol Soc Jpn 29: 63–72Google Scholar
  79. Hung LL, Trappe JM (1983) Growth variation between and within species of ectomycorrhizal fungi in response to pH in vitro. Mycologia 75: 234–241CrossRefGoogle Scholar
  80. Hunt GA, Trappe JM (1987) Seasonal hypogeous sporocarp production in a western Oregon Douglas-fir stand. Can J Bot 65: 438–445CrossRefGoogle Scholar
  81. Hyppel A (1968) Antagonistic effects of some soil fungi on Fomes annosus in laboratory experiments. Stud For Suec 64: 1–18Google Scholar
  82. Ivory MH (1980) Ectomycorrhizal fungi of lowland tropical pines in natural forests and exotic plantations. In: Mikola P (ed) Tropical mycorrhiza research. Oxford University Press, New York, pp 110–117Google Scholar
  83. Ivory MH, Munga FM (1983) Growth and survival of container-grown Pinus caribaea infected with various ectomycorrhizal fungi. Plant Soil 71: 339–344CrossRefGoogle Scholar
  84. Jansen AE, de Vries FW (1989) Mycorrhizas on Douglas fir in the Netherlands. Agric Ecosyst Environ 28: 197–200CrossRefGoogle Scholar
  85. Jones MD, Browning MHR, Hutchinson TC (1986) The influence of mycorrhizal associations on paper birch and jack pine seedlings when exposed to elevated copper, nickel or aluminum. Water Air Soil Pollut 31: 441–448CrossRefGoogle Scholar
  86. Kessel SL (1927) Soil organisms. The dependence of certain pine species on a biological soil factor. Emp For J 6: 70–74Google Scholar
  87. Kretzer A, Li Y, Szaro T, Bruns TD (1996) Internal transcribed spacer sequences from 38 recognized species of Suillus sensu lato: phylogenetic and taxonomic implications. Mycologia 88: 776–785CrossRefGoogle Scholar
  88. Laloue M, Hall RH (1973) Cytokinins in Rhizopogon roseolus: secretion of N-[9-(B-Dribofuranosyl-9H) purin-6-ylcarbamoyl]threonin into the culture medium. Plant Physiol 51: 559–562PubMedCrossRefGoogle Scholar
  89. Lamb RJ (1974) Effect of D-glucose on utilization of single carbon sources by ectomycorrhizal fungi. Trans Br Mycol Soc 63: 295–306CrossRefGoogle Scholar
  90. Lamb RJ (1979) Factors responsible for the distribution of mycorrhizal fungi of Pinus in eastern Australia. Aust For Res 9: 25–34Google Scholar
  91. Lamb RJ, Richards BN (1971) Effect of mycorrhizal fungi on the growth and nutrient status of slash and radiata pine seedlings. Aust For 35: 1–7Google Scholar
  92. Lamb RJ, Richards BN (1974a) Inoculation of pines with mycorrhizal fungi in natural soils. I. Effects of density and time of application of inoculum and phosphorus amendments on mycorrhizal infection. Soil Biol Biochem 6: 167–171Google Scholar
  93. Lamb RJ, Richards BN (1974b) Inoculation of pines with mycorrhizal fungi in natural soils. II. Effects of density and time of application of inoculum and phosphorus amendment on seedling yield. Soil Biol Biochem 6: 173–177Google Scholar
  94. Lamb RJ, Richards BN (1974c) Survival potential of sexual and asexual spores of ectomycorrhizal fungi. Trans Br Mycol Soc 62: 181–191CrossRefGoogle Scholar
  95. Lamb RJ, Richards BN (1978) Inoculation of pines with mycorrhizal fungi in natural soils. III. Effects of soil fumigation on rate of infection and response to inoculum density. Soil Biol Biochem 10: 273–276Google Scholar
  96. Levisohn I (1956) Growth stimulation of forest tree seedlings by the activity of free living mycorrhizal mycelia. Forestry 29: 53–59CrossRefGoogle Scholar
  97. Levisohn I (1965) Nutritional problems in forest nurseries–mycorrhizal investigations. G B For Comm Bull 37: 228–235Google Scholar
  98. Li CY, Massicote HB, Moore LVH (1992) Nitrogen-fixing Bacillus sp. associated with Douglas-fir tuberculate ectomycorrhiza. Plant Soil 140: 35–40CrossRefGoogle Scholar
  99. Liu B (1985) New species and new records of hypogeous fungi from China. Acta Mycol Sin 4: 84–89Google Scholar
  100. Lundeberg G (1970) Utilisation of various nitrogen sources, in particular bound soil nitrogen, by mycorrhizal fungi. Stud For Suec 79: 1–95Google Scholar
  101. Luoma DL (1988) Biomass and community structure of sporocarps formed by hypogeous ectomycorrhizal fungi within selected forest habitats of the HJ Andrews Experimental Forest, Oregon. PhD Thesis, Oregon State University, CorvallisGoogle Scholar
  102. Luoma DL, Frenkel RE, Trappe JM (1991) Fruiting of hypogeous fungi in Oregon Douglas-fir forests: seasonal and habitat variation. Mycologia 83: 335–353CrossRefGoogle Scholar
  103. Malajczuk N, Molina R, Trappe JM (1982) Ectomycorrhiza formation in Eucalyptus. I. Pure culture synthesis, host specificity and mycorrhizal compatibility with Pinus radiata. New Phytol 91: 467–482CrossRefGoogle Scholar
  104. Martin MP (1996) The genus Rhizopogon in Europe. Societat Catalana de Micologia, Barcelona Martin MP, Högberg N (1996) Molecular analysis confirms morphological reclassification of the genus Rhizopogon. Br Mycol Soc Centenary Symp (Abstr)Google Scholar
  105. Martin MP, Sanchez A (1996) Thin layer chromatography patterns of Rhizopogon species and their possible use as a taxonomic criterion. Rev Catalan Micol 19: 91–98Google Scholar
  106. Marx DH (1969) The influence of ectotrophic mycorrhizal fungi on the resistance of pine roots to pathogenic infections. I. Antagonism of mycorrhizal fungi and soil bacteria. Phytopathology 59: 153–163Google Scholar
  107. Marx DH (1980) Ectomycorrhizal fungus inoculations: a tool for improving forestation practices. In: Mikola P (ed) Tropical mycorrhiza research. Clarendon Press, Oxford, pp 11–71Google Scholar
  108. Marx DH, Daniel WJ (1976) Maintaining cultures of ectomycorrhizal and plant pathogenic fungi in sterile water cold storage. Can J Microbiol 22: 338–341PubMedCrossRefGoogle Scholar
  109. Maser C, Maser Z (1987) Notes on mycophagy in four species of mice in the genus Peromyscus. Great Basin Nat 47: 308–313Google Scholar
  110. Maser C, Maser Z (1988) Interactions among squirrels, mycorrhizal fungi, and coniferous forests in Oregon. Great Basin Nat 48: 358–369Google Scholar
  111. Maser C, Trappe JM, Nussbaum RA (1978) Fungal-small mammal interrelationships with emphasis on Oregon coniferous forests. Ecology 59: 799–809CrossRefGoogle Scholar
  112. Maser Z, Maser C (1987) Notes on mycophagy of the yellow-pine chipmunk (Eutamias amoenus) in northeastern Oregon. Murrelet 68: 24–27CrossRefGoogle Scholar
  113. Maser Z, Maser C, Trappe JM (1985) Food habits of the northern flying squirrel (Glaucomys sabrinus) in Oregon. Can J Zool 63: 1084–1088CrossRefGoogle Scholar
  114. Massicotte HB, Melville LH, Li CY, Peterson RL (1992) Structural aspects of Douglas- fir [Pseudotsuga menziesii ( Mirb.) Franco] tuberculate ectomycorrhizae. Trees 6: 137–146Google Scholar
  115. Massicotte HB, Molina R, Luoma DL, Smith JE (1994) Biology of the ectomycorrhizal genus Rhizopogon. II. Patterns of host-fungus specificity following spore inoculation of diverse hosts grown in mono-and dual cultures. New Phytol 126: 677–690Google Scholar
  116. Massicotte HB, Melville LH, Peterson RL, Molina R (1999) Biology of the ectomycorrhizal genus Rhizopogon. IV. Comparative morphology and anatomy of ectomycorrhizas synthesized between several Rhizopogon species on ponderosa pine (Pinus ponderosa). New Phytol (In press)Google Scholar
  117. Melin E, Nilsson H (1957) Transport of C“–labeled photosynthate to the fungal associate of pine mycorrhiza. Sven Bot Tidskr 51:1–166–186Google Scholar
  118. Melin E, Nilsson H, Hacskaylo E (1958) Translocation of cations to seedlings of Pinus virginiana through mycorrhizal mycelium. Bot Gaz 119: 243–246CrossRefGoogle Scholar
  119. Miller OK (1983) Ectomycorrhizae in the Agaricales and Gasteromycetes. Can J Bot 61:909–916 Miller SL (1986) Hypogeous fungi from the southeastern United States. I. The genus Rhizopogon. Mycotaxon 27: 193–218Google Scholar
  120. Miller SL, Koo CD, Molina R (1992) Early colonization of red alder and Douglas-fir by ectomycorrhizal fungi and Frankia in soils from the Oregon Coast Range. Mycorrhiza 2: 53–61CrossRefGoogle Scholar
  121. Miller SL, Torres P, McClean TM (1993) Basidiospore viability and germination in ectomycorrhizal and saprotrophic basidiomycetes. Mycol Res 97: 141–149CrossRefGoogle Scholar
  122. Miller SL, Torres P, McClean TM (1994) Persistence of basidiospores and sclerotia of ectomycorrhizal fungi and Morchella in soil. Mycologia 86: 89–95CrossRefGoogle Scholar
  123. Miura G, Hall RH (1973) trans-Ribosylzeatin: its biosynthesis in Zea mays endosperm and the mycorrhizal fungus, Rhizopogon roseolus. Plant Physiol 51: 563–569Google Scholar
  124. Modess O (1941) Zur Kenntnis der Mycorrhizabildner von Kiefer und Fichte. Symb Bot Ups 1: 1–146Google Scholar
  125. Mohan V, Natarajan K, Ingleby K (1993) Anatomical studies on ectomycorrhizas. III. The ectomycorrhizas produced by Rhizopogon luteolus and Scleroderma citrinum on Pinus patula. Mycorrhiza 3: 51–56CrossRefGoogle Scholar
  126. Molina R (1980a) Ectomycorrhizal inoculation of containerized western conifer seedlings. Research Note PNW-357, Pacific Northwest Forest and Range Experiment Station, US Department of Agriculture, Forest Service, CorvallisGoogle Scholar
  127. Molina R (1980b) Patterns of ectomycorrhizal host-fungus specificity in the Pacific Northwest. PhD Thesis, Oregon State University, CorvallisGoogle Scholar
  128. Molina R, Palmer JG (1982) Isolation, maintenance, and pure culture manipulation of ectomycorrhizal fungi. In: Schenck NC (ed) Methods and principles of mycorrhizal research. American Phytopathological Press, St Paul, pp 115–129Google Scholar
  129. Molina R, Trappe JM (1982a) Lack of mycorrhizal specificity by the ericaceous hosts Arbutus menziesii and Arctostaphylos uva-ursi. New Phytol 90: 495–509CrossRefGoogle Scholar
  130. Molina R, Trappe JM (1982b) Patterns of ectomycorrhizal host specificity and potential among Pacific Northwest conifers and fungi. For Sci 28: 423–458Google Scholar
  131. Molina R, Trappe JM (1994) Biology of the ectomycorrhizal genus Rhizopogon. I. Host associations, host-specificity and pure culture syntheses. New Phytol 125: 653–675CrossRefGoogle Scholar
  132. Molina R, Massicotte H, Trappe JM (1992) Specificity phenomena in mycorrhizal symbioses: community-ecological consequences and practical implications. In: Allen MF (ed) Mycorrhizal functioning: an integrative plant-fungal process. Chapman and Hall, New York, pp 357–423Google Scholar
  133. Molina R, Smith JE, McKay D, Melville LH (1997) Biology of the ectomycorrhizal genus, Rhizopogon. III. Influence of co-cultured conifer species on mycorrhizal specificity with the arbutoid hosts Arctostaphylos uva-ursi and Arbutus menziesii. New Phytol 137: 519–528CrossRefGoogle Scholar
  134. Momoh ZO (1976) Synthesis of mycorrhiza on Pinus oocarpa. Ann Appl Biol 82:221–226 North M, Trappe J, Franklin J (1997) Standing crop and animal consumption of fungal sporocarps in Pacific Northwest forests. Ecology 78: 1543–1554Google Scholar
  135. Odeyinde MA, Ekwebelam SA (1974) In search of a suitable pine mycorrhiza fungus in the high forest zones of Nigeria. Nig J For 4: 93–97Google Scholar
  136. Pachlewski R, Pachlewska J (1968) Rhizopogon luteolus Fr. in a synthesis with pine (Pinus silvestris L.) in pure culture in agar. Inst Bad Lesn 346: 77–95Google Scholar
  137. Pachlewski R, Pachlewska J (1974) Studies on symbiotic properties of mycorrhizal fungi of pine (Pinus silves tris L.) with the aid of the method of mycorrhizal synthesis in pure cultures on agar. Forest Research Institute, Warsaw, PolandGoogle Scholar
  138. Pacioni G (1984a) Champignons hypogés nouveaux pour l’Afrique du Nord. Bul Soc Mycol Fr 100: 111–124Google Scholar
  139. Pacioni G (1984b) Un nuovo fungo ipogeo raccolto in Sardegna: Rhizopogon sardöus nov. sp. Micol Ital 2: 45–47Google Scholar
  140. Parke JL, Linderman RG, Black CH (1983) The role of ectomycorrhizas in drought tolerance of Douglas-fir seedlings. New Phytol 95: 83–95CrossRefGoogle Scholar
  141. Parladé J, Alvarez IF (1993) Coinoculation of aseptically grown Douglas fir with pairs of ectomycorrhizal fungi. Mycorrhiza 3: 93–96CrossRefGoogle Scholar
  142. Parladé J, Pera J, Alvarez IF (1996) Inoculation of containerized Pseudotsuga menziesii and Pinus pin aster seedlings with spores of five species of ectomycorrhizal fungi. Mycorrhiza 6: 236–245Google Scholar
  143. Pilz P, Perry DA (1983) Impact of clearcutting and slash burning on ectomycorrhizal associations of Douglas-fir seedlings. Can J For Res 14: 94–100CrossRefGoogle Scholar
  144. Purnell H (1957) Notes on fungi found in Victorian plantations. III. The mycorrhizal fungi. Plantat Tech Pap For Comm Victoria 3: 9–13Google Scholar
  145. Rayner MC (1938) The use of soil or humus inocula in nurseries and plantations. Emp For J 17: 236–243Google Scholar
  146. Read DJ (1984) The structure and function of vegetative mycelium of mycorrhizal roots. In: Jennings DH, Rayner ADM (eds) Ecology and physiology of the fungal mycelium. Cambridge University Press, Cambridge, pp 215–240Google Scholar
  147. Read DJ, Boyd R (1986) Water relations of mycorrhizal fungi and their host plants. In: Ayres PG, Roddy L (eds) Water, fungi, and plants. Cambridge University Press, Cambridge, pp 287–303Google Scholar
  148. Read DJ, Francis R, Finlay RD (1985) Mycorrhizal mycelia and nutrient cycling in plant communities. In: Fitter AH, Atkinson D, Read DA, Usher MB (eds) Ecological interactions in soil. Blackwell, Palo Alto, pp 193–217Google Scholar
  149. Roth AL, Berch SM (1992) Ectomycorrhizae of Douglas-fir and western hemlock seedlings outplanted on eastern Vancouver Island. Can J For Res 22: 1646–1655CrossRefGoogle Scholar
  150. Rudawska M (1982) Effect of various organic sources of nitrogen on the growth of mycelium and content of auxin and cytokinin in cultures of some mycorrhizal fungi. Acta Physiol Plant 4: 11–20Google Scholar
  151. Rudawska M (1983) The effect of nitrogen and phosphorus on auxin and cytokinin production by mycorrhizal fungi. Arbor Kornickie 28: 219–236Google Scholar
  152. Sands R, Theodorou C (1978) Water uptake by mycorrhizal roots of radiata pine seedlings. Aust J Plant Physiol 5: 301–309CrossRefGoogle Scholar
  153. Sasek V, Musilek V (1967) Cultivation and antibiotic activity of mycorrhizal basidiomycetes. Folia Microbiol 12: 515–523CrossRefGoogle Scholar
  154. Simard SW, Molina R, Smith JE, Perry, Jones MD (1997a) Shared compatibility of ectomycorrhizae on Pseudotsuga menziesii and Betula papyrifera seedlings grown in mixture in soils from southern British Columbia. Can J For Res 27: 331–342CrossRefGoogle Scholar
  155. Simard SW, Perry DA, Jones MD, Myrold DD, Durall DM, Molina R (1997b) Net transfer of carbon between ectomycorrhizal tree species in the field. Nature 388: 579–582CrossRefGoogle Scholar
  156. Simard SW, Perry DA, Smith JE, Molina R (1997c) Effects of soil trenching on occurrence of ectomycorrhizas on Pseudotsuga menziesii seedlings grown in mature forests of Betula papyrifera and Pseudotsuga menziesii. New Phytol 136: 327–340CrossRefGoogle Scholar
  157. Skinner MF, Bowen GD (1974a) The penetration of soil by mycelial strands of ectomycorrhizal fungi. Soil Biol Biochem 6: 57–61CrossRefGoogle Scholar
  158. Skinner MF, Bowen GD (1974b) The uptake and translocation of phosphate by mycelial strands of pine mycorrhizas. Soil Biol Biochem 6: 53–56CrossRefGoogle Scholar
  159. Smith AH (1964) Rhizopogon,a curious genus of false truffle. Mich Bot 3:13–19Google Scholar
  160. Smith AH (1966) New and noteworthy higher fungi from Michigan. Mich Bot 5:18–25Google Scholar
  161. Smith AH (1968) Further studies on Rhizopogon. I. J Elisha Mitchell Sci Soc 84: 274–280Google Scholar
  162. Smith AH, Zeller SM (1966) A preliminary account of the North American species of Rhizopogon. Mem N Y Bot Gard 14: 1–178Google Scholar
  163. Smith JE, McKay D, Molina R (1994) Survival of mycorrhizal fungal isolates stored in sterile water at two temperatures and retrieved on solid and liquid nutrient media. Can J Microbiol 40: 736–742CrossRefGoogle Scholar
  164. Smith JE, Molina R, Perry DA (1995) Occurrence of ectomycorrhizas on ericaceous and coniferous seedlings grown in soils from the Oregon Coast Range. New Phytol 129: 73–81CrossRefGoogle Scholar
  165. States JS, Gaud WS (1997) Ecology of hypogeous fungi associated with ponderosa pine. I. Patterns of distribution and sporocarp production in some Arizona forests. Mycologia 89: 712–721Google Scholar
  166. Theodorou C (1967) Inoculation with pure cultures of mycorrhizal fungi of radiata pine growing in partially sterilized soil. Aust For 31: 303–309Google Scholar
  167. Theodorou C (1968) Inositol phosphate in needles of Pinus radiata D. Don and the phytase activity of mycorrhizal fungi. Proc 9th Int Congr Soil Sci 3: 483–493Google Scholar
  168. Theodorou C (1971) Introduction of mycorrhizal fungi into soil by spore inoculation of seed. Aust For 35: 17–22Google Scholar
  169. Theodorou C (1978) Soil moisture and the mycorrhizal association of Pinus radiata D. Don. Soil Biol Biochem 10: 33–37CrossRefGoogle Scholar
  170. Theodorou C (1980) The sequence of mycorrhizal infection of Pinus radiata D. Don followingGoogle Scholar
  171. inoculation with Rhizopogon luteolus Fr. and Nordh. Aust For Res 10:381–387Google Scholar
  172. Theodorou C (1984) Mycorrhizal inoculation of pine nurseries by spraying basidiospores onto soil prior to sowing. Aust For 47: 76–78Google Scholar
  173. Theodorou C, Benson AD (1983) Operational mycorrhizal inoculation of nursery beds with seed-borne fungal spores. Aust For 46: 43–47Google Scholar
  174. Theodorou C, Bowen GD (1970) Mycorrhizal responses of radiata pine in experiments with different fungi. Aust For 34: 183–191Google Scholar
  175. Theodorou C, Bowen GD (1971) Effects of non-host plants on growth of mycorrhizal fungi of radiata pine. Aust For 35: 17–22Google Scholar
  176. Theodorou C, Bowen GD (1973) Inoculation of seeds and soil with basidiospores of mycorrhizal fungi. Soil Biol Biochem 5: 765–771CrossRefGoogle Scholar
  177. Theodorou C, Bowen GD (1987) Germination of basidiospores of mycorrhizal fungi in the rhizosphere of Pinus radiata D. Don. New Phytol 106: 217–223Google Scholar
  178. Theodorou C, Skinner M (1976) Effects of fungicides on seed inocula of basidiospores of mycorrhizal fungi. Aust For Res 7: 53–58Google Scholar
  179. Thoen D (1974) Premières indications sur les mycorrhizes et les champignons mycorrhiziques des plantations d’exotiques du Hant-Shaba (République du Zaire). Bull Rech Agron Gembloux 9: 215–227Google Scholar
  180. Tilak KVBR, Li CY, Trappe JM (1988) Characterization of nitrogen-fixing Azospirillum within sporocarps of ectomycorrhizal fungi associated with Douglas-fir (Pseudotsuga menziesii ( Mirb.) Franco). Ind J Microbiol 28: 315–319Google Scholar
  181. Torres P, Honrubia M (1994a) Basidiospore viability in stored slurries. Mycol Res 98: 527–530CrossRefGoogle Scholar
  182. Torres P, Honrubia M (1994b) Inoculation of containerized Pinus halepensis (Miller) seedlings with basidiospores of Pisolithus arhizus (Pers.) Rauschert, Rhizopogon roseolus (Corda) and Suillus collinitus (Fr.) O. Kuntze. Ann Sci For 51: 521–528Google Scholar
  183. Trappe JM (1962) Fungus associates of ectotrophic mycorrhizae. Bot Rev 28:538–606 Trappe JM (1965) Tuberculate mycorrhizae of Douglas-fir. For Sci 11: 27–32Google Scholar
  184. Trappe JM (1967) Pure culture synthesis of Douglas-fir mycorrhizae with species of Hebeloma, Suillus, Rhizopogon, and Astraeus. For Sci 13: 121–130Google Scholar
  185. Trappe JM (1975) A revision of the genus Alpova with notes on Rhizopogon and the Melanogastraceae. Beih Nova Hedwigia 51: 279–309Google Scholar
  186. Trappe JM (1977) Selection of fungi for ectomycorrhizal inoculation in nurseries. Annu Rev Phytopathol 15: 203–222CrossRefGoogle Scholar
  187. Trappe JM, Guzman G (1971) Notes on some hypogeous fungi from Mexico. Mycologia 63: 317–332CrossRefGoogle Scholar
  188. Trojanowski J, Haider K, Hüttermann A (1984) Decomposition of “C-labeled ligninGoogle Scholar
  189. holocellulose and lignocellulose by mycorrhizal fungi. Arch Microbiol 139:202–206Google Scholar
  190. Tulasne L-R, Tulasne C (1844) Fungii hypogaei nonnulli, novi vel minus cogniti. G Bot Ital 2: 56–63Google Scholar
  191. Tulasne L-R, Tulasne C (1851) Fungi hypogaei. Friedrich Klincksieck, ParisGoogle Scholar
  192. Uhl M (1988) Studies on ectomycorrhizae. XV. Mycorrhizae formed by Rhizopogon luteolus on Pinus sylvestris. Persoonia 13: 449–458Google Scholar
  193. Visser S (1995) Ectomycorrhizal fungal succession in jack pine stands following wildfire. New Phytol 129: 389–401CrossRefGoogle Scholar
  194. Vittadini C (1831) Monographia Tuberacearum. Felicis Rusconi, MilanGoogle Scholar
  195. Vogt KA, Bloomfield J, Ammirati JF, Ammirati SR (1992) Sporocarp production by basidiomycetes, with emphasis on forest ecosystems. In: Carroll GC, Wicklow DT (eds) The fungal community, its organization and role in the ecosystem. Marcel Dekker, New York, pp 563–581Google Scholar
  196. Volkart CM (1964) Formacion de micorrizas en pinos centro-americanos bajo condiciones controladas. Turrialba 14: 203–205Google Scholar
  197. Young HE (1937) Rhizopogon luteolus,a mycorrhizal fungus of Pinus. Forestry 11:30–31Google Scholar
  198. Zak B (1971) Characterization and classification of mycorrhizae of Douglas-fir. II. Pseudotsuga menziesii + Rhizopogon vinicolor. Can J Bot 49: 1079–1084CrossRefGoogle Scholar
  199. Zak B (1973) Classification of ectomycorrhizae. In: Marks GC, Kozlowski TT (eds) Ectomycorrhizae, their ecology and physiology. Academic Press, New York, pp 43–78Google Scholar
  200. Zak B (1976) Pure culture synthesis of bearberry mycorrhizae. Can J Bot 54: 1297–1305CrossRefGoogle Scholar
  201. Zeller SM (1939) New and noteworthy Gasteromycetes. Mycologia 31: 1–32CrossRefGoogle Scholar
  202. Zeller SM (1941) Further notes on fungi. Mycologia 33: 196–214CrossRefGoogle Scholar
  203. Zeller SM, Dodge CW (1918) Rhizopogon in North America. Ann Mo Bot Gard 5: 1–36Google Scholar
  204. Zobel JB (1854) Iconum fungorum hucusque cognitorum. V I. Friderici Ehrlich, PragueGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • R. Molina
    • 1
  • J. M. Trappe
    • 2
  • L. C. Grubisha
    • 3
  • J. W. Spatafora
    • 3
  1. 1.USDA Forest Service, Pacific Northwest Research StationForestry Sciences LaboratoryCorvallisUSA
  2. 2.Department of Forest ScienceOregon State UniversityCorvallisUSA
  3. 3.Department of Botany and Plant PathologyOregon State UniversityCorvallisUSA

Personalised recommendations