Advertisement

Biodegradation and Bioremediation of Explosives

  • Jian-Shen Zhao
  • Diane Fournier
  • Sonia Thiboutot
  • Guy Ampleman
  • Jalal Hawari
Part of the Soil Biology book series (SOILBIOL, volume 1)

Abstract

Explosives are highly energetic chemicals that release large amounts of energy and gaseous products upon detonation in a short period of time. The history of explosives dates back to the development of black powder long before the industrial revolution started in Europe (Linder et al. 1980). Some of the most frequently manufactured and used secondary explosives include 2,4,6-trinitrotoluene (TNT), dinitrotoluenes (DNT),1,3,5-trinitrobenzene(TNB),N,2,4,6-tetranitro-N-methylaniline (tetryl), trinitroglycerine (TNG), nitroguanidine (NQ), ethylene glycol dinitrate (EGDN), nitrocellulose (NC), pentaerythritol tetranitrate (PETN), glycidyl azide polymer (GAP), hexahydro=1,3,5-trinitrio-1,3,5-triazine (RDX), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) and 2,4,6,8,10,12-hexanitrohexaazaisowurtzitane (CL-20) (Fig. 1).

Keywords

Phanerochaete Chrysosporium Nitroaromatic Compound Glycidyl Azide Polymer Pentaerythritol Tetranitrate Strain DN22 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Achtnich C, Sieglen U, Knackmuss HJ, Lenke H (1999) Irreversible binding of biologically reduced 2,4,6-trinitrotoluene to soil. Environ Toxicol Chem 18:2416–2423CrossRefGoogle Scholar
  2. Adrian NR, Chow T (2001) Identification of hydroxylaminodinitroso-1,3,5-triazine as a transient intermediate formed during the anaerobic biodegradation of RDX. Environ Toxicol Chem 20:1874–1877CrossRefGoogle Scholar
  3. Adrian NR, Lowder A (1999) Biodegradation of RDX and HMX by a methanogenic enrichment culture. In: Alleman BC, Leeson A (eds) Bioremediation of nitroaro-matic and haloaromatic compounds, vol 7. Battelle Press, Columbus, OH, pp 1–6Google Scholar
  4. Ahmad F, Hughes JB (2000) Anaerobic transformation of TNT by Clostridium. In: Spain JC, Hughes JB, Knackmuss HJ (eds) Biodegradation of nitroaromatic compounds and explosives. CRC Press, Boca Raton, pp 185–212Google Scholar
  5. Alvarez MA, Kitts CL, Botsford JL, Unkefer P (1995) Pseudomonas aeruginosa strain MA01 aerobically metabolizes the aminodinitrotoluenes produced by 2,4,6-trinitrotoluene nitro-group reduction. Can J Microbiol 41:984–991CrossRefGoogle Scholar
  6. Barr DP, Aust SD (1994) Mechanisms white rot fungi use to degrade pollutants. Environ Sei Technol 28:78–87Google Scholar
  7. Beller HR (2002) Anaerobic biotransformation of RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) by aquifer bacteria using hydrogen as the sole electron donor. Water Res 36:2533–2540CrossRefGoogle Scholar
  8. Bhushan B, Trott S, Spain JC, Halasz A, Paquet L, Hawari J (2003) Biotransformation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by a rabbit liver cytochrome P450: insight into the mechanism of RDX biodegradation by Rhodococcus sp. Strain DN22. Appl Environ Microbiol 69:1347–1351CrossRefGoogle Scholar
  9. Binks PR, Nicklin S, Bruce NC (1995) Degradation of hexahydro-1,3,5-trinitro-1,3,5- triazine (RDX) by Stenotrophomonas maltophila PB1. Appl Environ Microbiol 61: 1318–1322Google Scholar
  10. Boopathy R, Kulpa CF, Wilson M (1993) Metabolism of 2,4,6-trinitrotoluene(TNT) by Desulfovibrio sp. (B strain). Appl Microbiol Biotechnol 39:270–275CrossRefGoogle Scholar
  11. Boopathy R, Gurgas M, Ullian J, Manning J (1998) Metabolism of explosive compounds by sulfate-reducing bacteria. Curr Microbiol 37:127–131CrossRefGoogle Scholar
  12. Bose P, Glaze WH, Maddox S (1998) Degradation of RDX by various advanced oxidation processes: II. Organic byproducts. Water Res 32:1005–1018CrossRefGoogle Scholar
  13. Bowman (2001) Methods for psychrophilic bacteria. In: Paul JH (ed) Methods in microbiology, vol 30. Academic Press, Cambridge, MA, pp 591–615Google Scholar
  14. Brenner A, Ronen Z, Harel Y, Abeliovich A (2000) Use of hexahydro-1,3,5-trinitro-1,3,5- triazine as a nitrogen source in biological treatment of munitions wastes. Water Environ Res 72:469–475CrossRefGoogle Scholar
  15. Bruns-Nagel D, Steinbach K, Gemsa D, von Low E (2000) Composting (humification) of nitroaromatic compounds. In: Spain JC, Hughes JB, Knackmuss HJ (eds) Biodegradation of nitroaromatic compounds and explosives. CRC Press, Boca Raton, pp 357–394Google Scholar
  16. Coleman NV, Nelson DR, Duxbury T (1998) Aerobic biodegradation of hexahydro- 1,3,5-trinitro-1,3,5-triazine (RDX) as a nitrogen source by a Rhodococcus sp. strain DN22. Soil Biol Biochem 30:1159–1167CrossRefGoogle Scholar
  17. Coleman N, Spain JC, Duxbury T (2002) Evidence that RDX biodegradation by Rhodococcus sp. strain DN22 is a plasmid-borne and involved a cytochrome p-450. J Appl Microbiol 93:463–472CrossRefGoogle Scholar
  18. Drzyzga O, Bruns-Nagel D, Gorontzy T, Blotevogel K-H, von Low E (1999) Anaerobic incorporation of the radioabeled explosive TNT and metabolites into the organic soil matrix of contaminated soil after different treatment procedures. Chemosphere 38:2081–2095CrossRefGoogle Scholar
  19. Duque E, Haïdour A, Godoy F, Ramos JL (1993) Construction of a Pseudomonas hybrid strain that Mineralizes 2,4,6-Trinitrotoluene. J Bacteriol 175:2278–2283Google Scholar
  20. Esteve-Núñez A, Caballero A, Ramos JL (2001) Biological degradation of 2,4,6- trinitrotoluene. Microbiol Mol Biol Rev 65:335–352CrossRefGoogle Scholar
  21. Fernando T, Aust SD (1991) Biodegradation of munition waste TNT (2,4,6-t rinitrotoluene) and RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) by Phanerochaete chrysosporium. Ind Eng Chem ACS Symp Ser 486:214–232CrossRefGoogle Scholar
  22. Fiorella and Spain (1997) Transformation of 2,4,6-trinitrotoluene by Pseudomonas pseudoalcaligens JS52. Appl Environ Microbiol 63:2007–2015Google Scholar
  23. Fournier D, Halasz A, Spain J, Fiurasek P, Hawari J (2002) Determination of key metabolites during biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine with Rhodococcus sp. strain DN22. Appl Environ Microbiol 68:166–172CrossRefGoogle Scholar
  24. Freedman DL, Sutherland KW (1998) Biodegradation of hexahydro-1,3,5-trinitro- 1,3,5-triazine (RDX) under nitrate-reducing conditions. Water Sei Tech 38:33–40 French CE, Nicklin S, Bruce NC (1998) Aerobic degradation of 2,4,6-trinitrotoluene by Enterobacter cloacae PB2 and by pentaerythritol tetranitrate reductase. Appl Environ Microbiol 64:2864–2868Google Scholar
  25. Fritsche W, Hofrichter M (2000) Environmental Processes II-6: aerobic degradation by microorganisms In: Rehm HJ, Reed G, Pühler A, Stadler A (eds) Biotechnology, vol lib. Wiley-VCH, Weinheim, pp 145–167Google Scholar
  26. Fritsche W, Scheibner K, Herré A, Hofrichter M (2000) Fungal degradation of explosives:TNT and related nitroaromatic compounds. In: Spain JC, Hughes JB, Knackmuss HJ (eds) Biodegradation of nitroaromatic compounds and explosives. CRC Press, Boca Raton pp 213–237Google Scholar
  27. Fuller ME, Manning JF Jr (1997) Aerobic Gram-positive and Gram-negative bacteria exhibit differential sensitivity to and transformation of 2,4,6-trinitrotoluene (TNT). Curr Microbiol 35:77–83CrossRefGoogle Scholar
  28. Funk SB, Roberts DJ, Crawford DL, Crawford RL (1993) Initial-phase optimization for bioremediation of munition compound-contaminated soils. Appl Environ Microbiol 59:2171–2177Google Scholar
  29. Haas R, Schreiber I, Low E, Stork G (1990) Conception for the investigation of contaminated munitions plants, 2: investigation of former RDX-plants and filling stations. Fresenius J Anal Chem 338:41–45CrossRefGoogle Scholar
  30. Haidour A, Ramos JL (1996) Identification of products resulting from the biological reduction of 2,4,6-trinitrotoluene, 2,4-dinitrotoluene, 2,6-dinitrotoluene by Pseudomonas sp. Environ Sei Technol 30:2365–2370CrossRefGoogle Scholar
  31. Halasz A, Spain J, Paquet L, Beaulieu C, Hawari J (2002) Insights into the formation and degradation mechanisms of methylenedinitramine during the incubation of RDX with anaerobic sludge. Environ Sei Technol 36:633–638CrossRefGoogle Scholar
  32. Harter DR (1985) The use and importance of nitroaromatic chemicals in the chemical industry. In: Ricket DE (ed) Toxicity of nitroaromatic chemical industry. Hemisphere Publishing, New York, pp 1–14Google Scholar
  33. Hawari J (2000) Biodegradation of RDX and HMX: from basic research to field application. In: Spain JC, Hughes JB, Knackmuss HJ (eds) Biodegradation of nitroaromatic compounds and explosives. CRC Press, Boca Raton, pp 277–310Google Scholar
  34. Hawari J, Halasz A, Paquet L, Zhou E, Spencer B, Ampleman G, Thiboutot S (1998) Characterization of metabolites in the biotransformation of 2,4,6-trinitrotoluene with anaerobic sludge: role of triaminotoluene. Appl Environ Microbiol 64:2200–2206Google Scholar
  35. Hawari J, Halasz A, Beaudet S, Ampleman G, Thiboutot S (1999) Biotransformation of 2,4,6-trinitrotoluene (TNT) with Phanerochaete chrysosporium in agitated cultures at pH 4.5. Appl Environ Microbiol 65:2977–2986Google Scholar
  36. Hawari J, Beaudet S, Halasz A, Ampleman G, Thiboutot S (2000a) Microbial degradation of explosives: biotransformation versus mineralization. Appl Microbiol Biotechnol 54:605–618CrossRefGoogle Scholar
  37. Hawari J, Halasz A, Sheremata T, Beaudet S, Groom C, Paquet L, Rhofir C, Ampleman G, Thiboutot S (2000b) Characterization of metabolites during biodegradation of hexa-hydro-1,3,5-trinitro-1,3,5-triazine (RDX) with municipal anaerobic sludge. Appl Environ Microbiol 66:2652–2657CrossRefGoogle Scholar
  38. Hawari J, Halasz A, Beaudet S, Paquet L, Ampleman G, Thiboutot S (2001) Biotransformation routes of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine by municipal anaerobic sludge. Environ Sei Technol 35:70–75CrossRefGoogle Scholar
  39. Hodgson J, Rho D, Guiot SR, Ampleman G, Thiboutot S, Hawari J (2000) Tween 80 enhanced TNT mineralization by Phanerochaete chrysosporium. Can J Microbiol 46:1–9CrossRefGoogle Scholar
  40. Hofrichter M, Vares K, Scheibner K, Galkin S, Sipilä J, Hatakka A (1999) Mineralization and solubilization of synthetic lignin by manganese peroxidase from Nematoloma frowardii and Phlebia radiata. J Biotechnol 67:217–228CrossRefGoogle Scholar
  41. Jackson M, Green JM, Hash RL, Lindsten DC, Tatyrek AF (1978) Nitramine (RDX and HMX) wastewater treatment at the Holston Army Ammunition Plant. Report ARLCD-77013, US Army Armament Research and Development Command, DoverGoogle Scholar
  42. Jerger DE, Woodhull P (2000) Application and costs for biological treatment of explosive-contaminated soils in the US. In: Spain JC, Hughes JB, Knackmuss HJ (eds) Biodegradation of nitroaromatic compounds and explosives. CRC Press, Boca Raton, pp 395–423Google Scholar
  43. Jones AM, Greer CW, Ampleman G, Thiboutot S, Lavigne J, Hawari J (1995) Biodegrad-ability of selected highly energetic pollutants under aerobic conditions. 3rd International In Situ 8c On Site Bioreclamation Symposium. Battelle Press, Columbus, OH, pp 251–257Google Scholar
  44. Jorgensen BB (1982) Mineralization of organic matter in the sea bed-the role of sulfur reduction. Nature 296:643–645CrossRefGoogle Scholar
  45. Kalafut T, Wales ME, Rastogi VK, Naumova RP, Zaripova SK, Wild JR (1998) Biotransformation patterns of 2,4,6-trinitrotoluene by aerobic bacteria. Curr Microbiol 36: 45–54CrossRefGoogle Scholar
  46. Karl DM, Dore JE (2001) Microbial ecology at sea: sampling, subsampling and incubation considerations. In: Paul JH (ed) Methods in Microbiology, vol 30. Academic Press, Cambridge, pp 13–43Google Scholar
  47. Khan T, Hughes RB (1997) Anaerobic transformation of 2,4,6-TNT and related nitroaromatic compounds by Clostridium acetobutylicum. J Ind Microbiol Biotech-nol 18:198–203CrossRefGoogle Scholar
  48. Kitts CL, Cunningham DP, Unkefer PJ (1994) Isolation of three hexahydro-1,3,5-trinitro-1,3,5-triazine degrading species of the family Enterobacteriaceae from nitramine explosive-contaminated soil. Appl Environ Microbiol 60:4608–4711Google Scholar
  49. Kitts CL, Green CE, Otley RA, Alvarez MA, Unkefer PJ (2000) Type I nitroreductases in soil enterobacteria reduce TNT (2,4,6-trinitrotoluene) and RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine). Can J Microbiol 46:378–282CrossRefGoogle Scholar
  50. Knicker H, Bruns-Nagel D, Drzyzga O, von Low E, Steinbach K (1999) Characterization of 15N-TNT residues after an anaerobic/aerobic treatment of soil/molasses mixtures by solid-state 15N NMR spectroscopy. 1. Determination and optimization of relevant NMR spectroscopic parameters. Environ Sei Technol 33:343–349CrossRefGoogle Scholar
  51. Knoblauch C, Sahm K, Jorgensen BB (1999) Psychrophilic sulfate-reducing bacteria isolated from permanently cold arctic marine sediments. Int J Syst Bacteriol 49:1631–1643CrossRefGoogle Scholar
  52. Lenke H, Knackmuss HJ (1992) Initial hydrogenation during catabolism of picric acid by Rhodococcus erythropolis strains HL 24–2. Appl Environ Microbiol 58:2933–2937Google Scholar
  53. Lenke H, Achtnich C, Knackmuss HJ (2000) Perspectives of bioelimination of polyni-troaromatic compounds. In: Spain JC, Hughes JB, Knackmuss HJ (eds) Biodegradation of nitroaromatic compounds and explosives. CRC Press, Boca Raton, pp 91–126Google Scholar
  54. Lewis TA, Goszczynski T, Crawford RL, Korus RA, Admassu W (1996) Products of Anaerobic 2,4,6-Trinitronitoluene (TNT) Transformation by Clostridium biferman-tans. Appl Environ Microbiol 62:4669–4674Google Scholar
  55. Lewis TA, Ederer MM, Crawford RL, Crawford DL (1997) Microbial transformation of 2,4,6-trinitrotoluene. J Ind Microbiol Biotechnol 18:89–96CrossRefGoogle Scholar
  56. Linder V (1980) Kirk-Othmer Encyclopedia of Chemical Technology, vol 9, 3rd edn. Wiley, New York, pp 561–620Google Scholar
  57. Martin JL, Comfort SD, Shea PJ, Kokjohn TA, Drijber RA (1997) Denitration of 2,4,6-trinitrotoluene by Pseudomonas savastanoL Can J Microbiol 43:447–455Google Scholar
  58. McCormick NG, Feeherry FE, Levinson HS (1976) Microbial transformation of 2,4,6-trinitrotoluene and other nitroaromatic compounds. Appl Environ Microbiol 31: 949–958Google Scholar
  59. McCormick NG, Cornell JH, Kaplan AM (1981) Biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine. Appl Environ Microbiol 42:817–823Google Scholar
  60. Melius CF (1990) Thermochemical modeling. I: Application to decomposition of energetic materials. In: Bulusu SN (ed) Chemistry and physics of energetic materials. Kluwer, Dordrecht, pp 21–49CrossRefGoogle Scholar
  61. Montpas S, Samson J, Langlois É, Lei J, Piché Y, Chênevert R (1997) Degradation of 2,4,6-trinitrotoluene by Serratia marcescens. Biotechnol Lett 19:291–294CrossRefGoogle Scholar
  62. Myler CA, Sisk W (1991) Bioremediation of explosives contaminated soils: scientific questions/engineering realities. In: Sayler G, Fox SR, Blackburn JW (eds) Environmental biotechnology for waste treatment. Plenum Press, New York, pp 137–146CrossRefGoogle Scholar
  63. Naumov AV, Suvorova ES, Boronin AM, Zaripova SK, Naumova RP (1999) Transformation of 2,4,6-trinitrotoluene into toxic hydroxylamino derivatives by lactobacilli. Microbiology (Russian) 68:46–51Google Scholar
  64. Nielsen AT, Chafin AP, Christian SL, Moore DW, Nadler MP, Nissan RA, Vanderah DJ, Gilardi RD, George CF, Flippen-Anderson JL (1998) Synthesis of polyazapolycyclic caged polynitramines. Tetrahedron 54:11793–11812Google Scholar
  65. Nishino SF, Paoli GC, Spain JC (2000) Aerobic degradation of dinitrotoluenes and pathway for bacterial degradation of 2,6-dinitrotoluene. Appl Environ Microbiol 66:2139–2147CrossRefGoogle Scholar
  66. Oh BT, Just CL, Alvarez PJJ (2001) Hexahydro-1,3,5-trinitro-1,3,5-triazine mineralization by zerovalent ion and mixed anaerobic cultures. Environ Sei Technol 35: 4341–4346CrossRefGoogle Scholar
  67. Pak JW, Knoke KL, Noguera DR, Fox BG, Chambliss GH (2000) Transformation of 2,4,6-trinitrotoluene by purified xenobiotic reductase B from Pseudomonas fluorescens I-C. Appl Environ Microbiol 47:42–50Google Scholar
  68. Patsy-Grigsby MB, Lewis TA, Crawford DL, Crawford RL (1996) Transformation of 2,4,6-trinitrotoluene (TNT) by actynomycetes isolated from TNT-contaminated and uncontaminated environments. Appl Environ Microbiol 62:1120–1123Google Scholar
  69. Pfeil A (1999) Microbial degradation of nitrocellulose in a composting environment. Propellants, Explosives, Pyrotechnics 24:156–158CrossRefGoogle Scholar
  70. Preuss A, Rieger P-G (1995) Anaerobic transformation of 2,4,6-Trinitrotoluene and other nitroaromatic compounds. In: Spain JC (ed) Biodegradation of nitroaromatic compounds. Plenum Press, New York, pp 69–85Google Scholar
  71. Pudge IB, Daugulis AJ, Dubois C (2003) The use of Enterobacter cloacae ATCC 43560 in the development of a two-phase partitioning bioreactor for the destruction of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). J Biotechnol 100:65–75CrossRefGoogle Scholar
  72. Regan KM, Crawford RL (1994) Characterization of Clostridium bifermentans and its biotransformation of 2,4,6-trinitrotoluene (TNT) and 1,3,5-triaza-1,3,5-trinitrocyclohexane (RDX). Biotechnol Lett 16:1081–1086CrossRefGoogle Scholar
  73. Rieger PG, Knackmuss H J (1995) Basic knowledge and perspectives on biodégradation of 2,4,6-trinitrotoluene and related nitroaromatic compounds in contaminated soil. In: Spain JC (ed) Biodegradation of nitroaromatic compounds. Plenum Press, New York,pp 1–18Google Scholar
  74. Rosenblatt DH, Burrows EP, Mitchell WR, Parmer DL (1991) Organic explosives and related compounds In: Hutzinger PGO (ed) The handbook of environmental chemistry, vol 3. Springer, Berlin Heidelberg New York, pp 196–225Google Scholar
  75. Scheibner K, Hofrichter M (1998) Conversion of aminodinitrotoluenes by fungal manganese peroxidase. J Basic Microbiol 38:51–59CrossRefGoogle Scholar
  76. Scheibner K, Hofrichter M, Herre A, Michels J, Frische W (1997a) Screening for fungi intensively mineralizing 2,4,6-trinitrotoluene. Appl Microbiol Biotechnol 47:452–457CrossRefGoogle Scholar
  77. Scheibner K, Hofrichter M, Frische W (1997b) Mineralization of 2-amino-4,6-dinitrotoluene by manganese peroxidase of the white rot fungus Nematoloma frowardii. Biotechnol Lett 19:835–839CrossRefGoogle Scholar
  78. Seth-Smith HMB, Rosser SJ, Basran A, Travis ER, Dabbs ER, Nickiin S, Bruce NC (2002) Cloning, sequencing, and characterization of the hexahydro-1,3,5-trinitro -1,3,5-triazine degradation gene cluster from Rhodococcus rhodochrous. Appl Environ Microbiol 68:4764–4771Google Scholar
  79. Sheremata TW, Hawari J (2000) Mineralization of RDX by the white rot funguns Phane- rochaete chrysosporium to carbon dioxide and nitrous oxide. Environ Sei Technol 34:3384–3388CrossRefGoogle Scholar
  80. Spain JC (1995a) Bacterial degradation of nitroaromatic compounds under aerobic conditions. In: Spain JC (ed) Biodegradation of nitroaromatic compounds. Plenum Press, New York, pp 19–35Google Scholar
  81. Spain JC (1995b) Biodegradation of nitroaromatic compounds. Annu Rev Microbiol 49:523–555CrossRefGoogle Scholar
  82. Stahl JD, Aust SD (1995) Biodegradation of 2,4,6-Trinitrotoluene by the White Rot Fungus Phanerochaete chrysosporium. In: Spain JC (ed) Biodegradation of nitroaromatic compounds. Plenum Press, New York, pp 117–133Google Scholar
  83. Stahl JD, Aken BV, Cameron MD, Aust SD (2001) Hexahydro-1,3,5-trinitro-1,3,5=triazine (RDX) biodégradation in liquid and solid-state matrices by Phanerochaete chrysosporium. Biorem J 5:13–25CrossRefGoogle Scholar
  84. Sunahara GI, Robidoux PY, Gong P, Lachance B, Rocheleau S, Dodard SG, Sarrazin M, Hawari J, Thiboutot S, Ampleman G, Renoux AY (2001) Laboratory and field approaches to characterize the soil ecotoxicology of polynitro explosives. In: Greenberg BM, Hull RN, Roberts MH Jr, Gensemer RW (eds) Environmental Toxicology and risk assessment: science, policy, and standarization — implications for environmental decisions, vol 10. STP 1403. American Society for Testing and Materials, West Conshohocken, PA, pp 293–312Google Scholar
  85. Talmage SS, Opresko DM, Maxwel CJ, Welsh CJE, Cretella FM, Reno PH, Daniel F (1999) Nitroaromatic munition compounds: environmental effects and screening values. Rev Environ Contam Toxicol 161:1–156CrossRefGoogle Scholar
  86. Trott S, Halasz A, Hawari J, Spain J (2003) Biodegradation of the nitramine CL-20. Appl Environ Microbiol 69:1871–1874CrossRefGoogle Scholar
  87. Urbanski T (1983) Chemistry and Technology of Explosives. Pergamon Press, Oxford, pp 17–77Google Scholar
  88. Vanderberg LA, Perry JJ, Unkefer PJ (1995) Catabolism of 2,4,6-trinitrotoluene by Mycobacterium vaccae. Appl Microbiol Biotechnol 43:937–945CrossRefGoogle Scholar
  89. Vasilyeva GK, Oh B-T, Shea PJ, Drijber RA, Kreslavski VD, Minard R, Bollag J-M (2000) Aerobic TNT reduction via 2-hydroxylamino-4,6-dinitrotoluene by Pseudomonas aeruginosa strain MX isolated from munitions-contaminated soil. Biorem J 4:111–124CrossRefGoogle Scholar
  90. Vorbeck CV, Lenke H, Fischer P, Knackmuss H-J (1994) Identification of a hydride-Meisenheimer complex as a metabolite of 2,4,6-trinitrotoluene by Mycobacterium strain. J Bacteriol 176:932–934Google Scholar
  91. Vorbeck CV, Lenke H, Fischer P, Spain JC, Knackmuss H-J (1998) Initial reductive reaction in aerobic microbial metabolism of 2,4,6-trinitrotoluene. Appl Environ Microbiol 64:246–252Google Scholar
  92. Wardle BR, Hinshaw JC, Braithwaite P, Rose M, Johnston G, Jones R, Poush K (1996) Energetic materials: technology, manufacturing and processing. Fraunhofer Institut fur Chemische Technologie, Karlsruhe, Germany, 27, pp 1–10Google Scholar
  93. Yang Y, Wang X, Yin P, Li W, Zhou P (1983) Studies on three strains of Cory neb acter ium degrading cyclotrimethylene-trinitroamine (RDX). Acta Microbiol Sin 23:251–256Google Scholar
  94. Yinon J (1990) Toxicity and metabolism of explosives. CRC Press, Boca Raton, p 36Google Scholar
  95. Young DM, Unkefer PJ, Ogden KL (1997) Biotransformation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by a prospective consortium and its most effective isolate Serratia marcescens. Biotechnol Bioeng 53:515–522CrossRefGoogle Scholar
  96. Zaripov SA, Naumov AV, Abdrakhmanova JF, Garusov AV, Naumova RP (2002) Models of 2,4,6-trinitrotoluene (TNT) initial conversion by yeasts. FEMS Microbiol Lett 217: 213–217CrossRefGoogle Scholar
  97. Zhao JS, Ward OP (2001) Substrate selectivity of a 3-nitrophenol-induced metabolic system in Pseudomonas putida 2NP8 transforming nitroaromatic compounds to ammonia under aerobic conditions. Appl Environ Microbiol 67:1388–1391CrossRefGoogle Scholar
  98. Zhao JS, Singh A, Huang XD, Ward OP (2000) Biotransformation of hydroxy-laminobenzene and aminophenol by Pseudomonas putida 2NP8 cells grown in the presence of 3-nitrophenol. Appl Environ Microbiol 66:2336–2342CrossRefGoogle Scholar
  99. Zhao JS, Halasz A, Paquet L, Beaulieu C, Hawari J (2002) Biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine and its mononitroso derivative hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine by Klebsiella pneumoniae strain SCZ-1 isolated from an anaerobic sludge. Appl Environ Microbiol 68:5336–5341CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Jian-Shen Zhao
    • 1
  • Diane Fournier
    • 1
  • Sonia Thiboutot
    • 2
  • Guy Ampleman
    • 2
  • Jalal Hawari
    • 1
  1. 1.Biotechnology Research InstituteNational Research Council of CanadaMontréalCanada
  2. 2.Department of National DefenseDefense Research Establishment ValcartierQuébecCanada

Personalised recommendations