Advertisement

Membrane Lipids and Proteins as a Basis of Red Cell Shape and its Alterations

  • Bernhard Deuticke
Chapter

Abstract

The peculiar, biconcave-discoidal, shape of the mammalian erythrocyte has intrigued scientists from many disciplines between theoretical physics and clinical medicine ever since its first observation following the invention of sufficiently magnifying microscopes.

Keywords

Shape Change Erythrocyte Membrane Human Erythrocyte Electric Field Pulse Outer Leaflet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agre P, Parker JC, (eds) (1989) Red blood cell membranes. Marcel Dekker, New York Allan D, Thomas P (1981) Ca+-induced biochemical changes in human erythrocytes and their relation to microvesiculation. Biochem J 198:433–440Google Scholar
  2. Anderson RA, Lovrien RE (1981) Erythrocyte membrane sidedness in lectin control of the Ca +-A23187- mediated diskocyte echinocyte conversion. Nature 292:158–161CrossRefADSGoogle Scholar
  3. Artmann GM, Sung KL, Horn T, Whittemore D, Norwich G, Chien S (1997) Micropipette aspiration of human erythrocytes induces echinocytes via membrane phospholipid translocation. Biophys J 72:1434–1441CrossRefGoogle Scholar
  4. Backman L (1986) Shape control in the human red blood cell. J Cell Sci 80:281–298Google Scholar
  5. Bassé F, Stout JG, Sims PJ, Wiedmer T (1996) Isolation of an erythrocyte membrane protein that mediates Ca +-dependent transbilayer movement of phospholipid. J Biol Chem 271:17205–17210CrossRefGoogle Scholar
  6. Baumann M (2001) Early stage shape change of human erythrocytes after application of electric field pulses. Mol Membr Biol 18:153–160CrossRefGoogle Scholar
  7. Bennett V (1990) Spectrin-based membrane skeleton: A multipotential adaptor between plasma membrane and cytoplasm. Physiol Rev 70:1029–1065Google Scholar
  8. Bennett V, Baines AJ (2001) Spectrin and ankyrin-based pathways: metazoan inventions for integrating cells into tissues. Physiol Rev 81:1353–1392Google Scholar
  9. Bessis M (1972) Red cell shapes. An illustrated classification and its rationale. Nouv Rev fr Hémat 12:721–746Google Scholar
  10. Bessis M (1973) Living blood cells and their ultrastructure. Springer-Verlag, BerlinGoogle Scholar
  11. Bessis M (1974) Corpuscles. Atlas of Red Blood Cell Shapes. Springer-Verlag, BerlinGoogle Scholar
  12. Bessis M (1977) La forme et la déformabilité des érythrocytes normaux et dans certaines anémies hémolytiques congénitales. Nouv Rev fr Hémat 18:75–94Google Scholar
  13. Bifano EM, Novak TS, Freedman JC (1984) Relationship between the shape and the membrane potential of human red blood cells. J Membrane Biol 82:1–13CrossRefGoogle Scholar
  14. Birchmeier W, Singer SJ (1977) On the mechanism of ATP-induced shape changes in human erythrocyte membranes. II. The role of ATP. J Cell Biol 73:647–659CrossRefGoogle Scholar
  15. Birchmeier W, Lanz JH, Winterhalter KH, Conrad MJ (1979) ATP-induced endocytosis in human erythrocyte ghosts. Characterization of the process and isolation of the endocy-tosed vesicles. J Biol Chem 254:9298–9304Google Scholar
  16. Blank ME, Hoefner DM, Diedrich DF (1994) Morphology and volume alterations of human erythrocytes caused by the anion transporter inhibitors, DIDS and p-azidobenzylphlorizin. Biochim Biophys Acta 1192:223–233CrossRefGoogle Scholar
  17. Boal DH (1994) Computer simulation of a model network for the erythrocyte cytoskeleton. Biophys J 67:521–529CrossRefGoogle Scholar
  18. Bobrowska-Hägerstrand M, Iglic A, Hägerstrand H (1997) Erythrocytes vesiculate at high pH. Cellular and Molecular Biology Letters 2:9–13Google Scholar
  19. Bobrowska-Hägerstrand M, Hägerstrand H, Iglic A (1998) Membrane skeleton and red blood cell vesiculation at low pH. Biochim Biophys Acta 1371:123–128CrossRefGoogle Scholar
  20. Broekhuyse RM (1974) Improved lipid extraction of erythrocytes. Clin Chim Acta 51:341–343CrossRefGoogle Scholar
  21. Bucki R, Bachelot-Loza C, Zachowski A, Giraud F, Sulpice JC (1998) Calcium induces phospholipid redistribution and microvesicle release in human erythrocyte membranes by independent pathways. Biochemistry 37:15383–15391CrossRefGoogle Scholar
  22. Bull BS, Brailsford D (1989) Red blood cell shape. In: Agre P, Parker JC (eds) Red blood cell membranes. Marcel Dekker, New York, pp 401–421Google Scholar
  23. Bull BS, Weinstein RS, Korpman RA (1986) On the thickness of the red cell membrane skeleton: Quantitative electron microscopy of maximally narrowed isthmus regions of intact cells. Blood Cells 12:25–42Google Scholar
  24. Canfield VA, Macey RI (1984) Anion exchange in human erythrocytes has a large activation volume. Biochim Biophys Acta 778:379–384CrossRefGoogle Scholar
  25. Carter DP, Fairbanks G (1984) Inhibition of erythrocyte membrane shape change by band 3 cytoplasmic fragment. J Cell Biochem 24:385–393CrossRefGoogle Scholar
  26. Cevc G, Marsh D (1987) Phospholipid bilayers: Physical principles and models. John Wiley & Sons, USAGoogle Scholar
  27. Chabanel A, Flamm M, Sung KL, Lee MM, Schachter D, Chien S (1983) Influence of cholesterol content on red cell membrane viscoelasticity and fluidity. Biophys J 44:171–176CrossRefGoogle Scholar
  28. Chang SH, Low PS (2001) Regulation of the glycophorin C-protein 4.1 membrane-to-skeleton bridge and evaluation of its contribution to erythrocyte membrane stability. J Biol Chem 276:22223–22230CrossRefGoogle Scholar
  29. Chasis JA, Schrier SL (1989) Membrane deformability and the capacity for shape change in the erythrocyte. Blood 74:2562–2568Google Scholar
  30. Chasis JA, Mohandas N, Shohet SB (1985) Erythrocyte membrane rigidity induced by glycophorin A-ligand interaction. Evidence for a ligand-induced association between glycophorin A and skeletal proteins. J Clin Invest 75:1919–1926CrossRefGoogle Scholar
  31. Connor J, Gillum K, Schroit AJ (1990) Maintenance of lipid asymmetry in red blood cells and ghosts: effect of divalent cations and serum albumin on the transbilayer distribution of phosphatidylserine. Biochim Biophys Acta 1025:82–86CrossRefGoogle Scholar
  32. Daleke DL, Huestis WH (1989) Erythrocyte morphology reflects the transbilayer distribution of incorporated phospholipids. J Cell Biol 108:1375–1385CrossRefGoogle Scholar
  33. Deuticke B (1968) Transformation and restoration of biconcave shape of human erythrocytes induced by amphiphilic agents and changes of ionic environment. Biochim Biophys Acta 163:494–500CrossRefGoogle Scholar
  34. Deuticke B (1977) Properties and structural basis of simple diffusion pathways in the erythrocyte membrane. Rev Physiol Biochem Pharmacol 78:1–97CrossRefGoogle Scholar
  35. Deuticke B, Schwister K (1989) Leaks induced by electrical breakdown in the erythrocyte membrane. In: Neumann E, Sowers A, Jordan CA (eds) Electroporation and Electrofu-sion in Cell Biology. Plenum Press, New York, pp 127–148Google Scholar
  36. Deuticke B, Grebe R, Haest CWM (1990) Action of drugs on the erythrocyte membrane. In: Harris JR (ed) Blood Cell Biochemistry, vol 1: Erythroid cells. Plenum Press, New York, pp 475–529Google Scholar
  37. Donath E, Voigt A (1986) Electrophoretic mobility of human erythrocytes. On the applicability of the charged layer model. Biophys J 49:493–499CrossRefGoogle Scholar
  38. Dumaswala VJ, Greenwalt TJ (1984) Human erythrocytes shed exocytic vesicles in vivo. Transfusion 24:490–492CrossRefGoogle Scholar
  39. Eidmann K (1997) Membranpotentialabhängigkeit der Translokation eines anionischen Ly-sophospholipids in der Erythrozytenmembran. MD Thesis RWTH Aachen, Shaker-VerlagGoogle Scholar
  40. Elgsaeter A, Mikkelsen A (1991) Shapes and shape changes in vitro in normal red blood cells. Biochim Biophys Acta 1071:273–290CrossRefGoogle Scholar
  41. Elgsaeter A, Stokke BT, Mikkelsen A, Branton D (1986) The molecular basis of erythrocyte shape. Science 234:1217–1223CrossRefADSGoogle Scholar
  42. Eriksson LEG (1990) On the shape of human red blood cells interacting with flat artificial surfaces — the ‘glass effect’. Biochim Biophys Acta 1036:193–201CrossRefGoogle Scholar
  43. Evans EA, Skalak R (1979) Mechanics and thermodynamics of biomembranes. CRC Crit Rev Bioeng 3:181–184Google Scholar
  44. Fairbanks G, Steck TL, Wallach DF (1971) Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry 10:2606–2617CrossRefGoogle Scholar
  45. Feo C, Mohandas N (1977) Clarification of role of ATP in red-cell morphology and function. Nature 265:166–168CrossRefADSGoogle Scholar
  46. Ferrell JE Jr, Huestis WH (1984) Phosphoinositide metabolism and the morphology of human erythrocytes. J Cell Biol 98:1992–1998CrossRefGoogle Scholar
  47. Ferrell JE Jr, Lee KJ, Huestis WH (1985) Membrane bilayer balance and erythrocyte shape: a quantitative assessment. Biochemistry 24:2849–2857CrossRefGoogle Scholar
  48. Fischer TM, Haest CWM, Stöhr M, Kamp D, Deuticke B (1978) Selective alteration of red cell deformability by SH-reagents. Evidence for an involvement of spectrin in membrane shear elasticity. Biochim Biophys Acta 510:270–282CrossRefGoogle Scholar
  49. Fuhrmann GF (1968) Kationentransport, Haemolyse und Fragmentieren von menschlichen Erythrozyten in Harnstofflösungen. Blut 16:321–327CrossRefGoogle Scholar
  50. Gedde MM, Huestis WH (1997) Membrane potential and human erythrocyte shape. Biophys J 72:1220–1233CrossRefGoogle Scholar
  51. Gedde MM, Davis DK, Huestis WH (1997) Cytoplasmic pH and human erythrocyte shape. Biophys J 72:1234–1246CrossRefGoogle Scholar
  52. Gedde MM, Yang E, Huestis WH (1999) Resolution of the paradox of red cell shape changes in low and high pH. Biochim Biophys Acta 1417:246–253CrossRefGoogle Scholar
  53. Gimsa J (1998) A possible molecular mechanism governing human erythrocyte shape. Biophys J 75:568–569CrossRefGoogle Scholar
  54. Gimsa J, Ried C (1995) Do band 3 protein conformational changes mediate shape changes of human erythrocytes? Mol Membr Biol 12:247–254CrossRefGoogle Scholar
  55. Glaser R (1998) Does the transmembrane potential (A1?) or the intracellular pH (pHi) control the shape of human erythrocytes? Biophys J 75:569–570CrossRefGoogle Scholar
  56. Grebe R, Schmid-Schönbein H (1985) Tangent counting for objective assessment of erythrocyte shape changes. Biorheology 22:455–469Google Scholar
  57. Grebe R, Wolff H, Schmid-Schönbein H (1988) Influence of red cell surface charge on red cell membrane curvature. Pflügers Arch 413:77–83CrossRefGoogle Scholar
  58. Gros M, Vrhovec S, Brumen M, Svetina S, Zeks B (1996) Low pH induced shape changes and vesiculation of human erythrocytes. Gen Physiol Biophys 15:145–163Google Scholar
  59. Grunze M, Forst B, Deuticke B (1980) Dual effect of membrane cholesterol on simple and mediated transport processes in human erythrocytes. Biochim Biophys Acta 600:860–869CrossRefGoogle Scholar
  60. Haest CWM (1982) Interactions between membrane skeleton proteins and the intrinsic domain of the erythrocyte membrane. Biochim Biophys Acta 694:331–352CrossRefGoogle Scholar
  61. Haest CWM, Kamp D, Deuticke B (1997) Transbilayer reorientation of phospholipid probes in the human erythrocyte membrane. Lessons from studies on electroporated and resealed cells. Biochim Biophys Acta 1325:17–33CrossRefGoogle Scholar
  62. Haest CWM, Fischer TM, Plasa G, Deuticke B (1980a) Stabilization of erythrocyte shape by a chemical increase of membrane shear stiffness. Blood Cells 6:539–553Google Scholar
  63. Haest CWM, Plasa G, Kamp D, Deuticke B (1980b) Protein-lipid interaction in the erythrocyte membrane: relevance for structural properties. In: Lassen U, Ussing HH, Wieth JO (eds) Membrane transport in erythrocytes. Alfred Benzon Symposium 14, Munks-gaard, Kopenhagen, pp 108–119Google Scholar
  64. Hardy B, Schrier SL (1978) The role of spectrin in erythrocyte ghost endocytosis. Biochem Biophys Res Commun 81:1153–1161CrossRefGoogle Scholar
  65. Hägerstrand H, Isomaa B (1992) Morphological characterization of exovesicles and en-dovesicles released from human erythrocytes following treatment with amphiphiles. Biochim Biophys Acta 1109:117–126CrossRefGoogle Scholar
  66. Heinrich R, Gaestel M, Glaser R (1981) The electric potential across the erythrocyte membrane: A mathematical model. Acta biol med germ 40:765–770Google Scholar
  67. Heinrich V, Ritchie K, Mohandas N, Evans E (2001) Elastic thickness compressibility of the red cell membrane. Biophys J 81:1452–1463CrossRefGoogle Scholar
  68. Henseleit U, Plasa G, Haest CWM (1990) Effects of divalent cations on lipid flip-flop in the human erythrocyte membrane. Biochim Biophys Acta 1029:127–135CrossRefGoogle Scholar
  69. Henszen MMM, Weske M, Schwarz St, Haest CWM, Deuticke B (1997) Electric field pulses induce reversible shape transformation of human erythrocytes. Mol Membr Biol 14:195–204CrossRefGoogle Scholar
  70. Isomaa B, Hägerstrand H, Paatero G (1987) Shape transformations induced by amphiphiles in erythrocytes. Biochim Biophys Acta 899:93–103CrossRefGoogle Scholar
  71. Jinbu Y, Nakao M, Otsuka M, Sato S (1983) Two steps in ATP-dependent shape changes of human erythrocyte ghosts. Biochem Biophys Res Commun 112:384–390CrossRefGoogle Scholar
  72. Jinbu Y, Sato S, Nakao M (1984) Reversible shape change of Tri ton-treated erythrocyte ghosts induced by Ca2+ and Mg-ATP. Nature 307:376–378CrossRefADSGoogle Scholar
  73. Johnson RM, Robinson J (1976) Morphological changes in asymmetric erythrocyte membranes induced by electrolytes. Biochem Biophys Res Commun 70:925–931CrossRefGoogle Scholar
  74. Johnson RM, Taylor G, Meyer DB (1980) Shape and volume changes in erythrocyte ghosts and spectrin-actin networks. J Cell Biol 86:371–376CrossRefGoogle Scholar
  75. Kamp D, Sieberg T, Haest CWM (2001) Inhibition and stimulation of phospholipid scrambling activity. Consequences for lipid asymmetry, echinocytosis, and microvesicula-tion of erythrocytes. Biochemistry 40:9438–9446CrossRefGoogle Scholar
  76. Khodadad JK, Waugh RE, Podolski JL, Josephs R, Steck TL (1996) Remodeling the shape of the skeleton in the intact red cell. Biophys J 70:1036–1044CrossRefGoogle Scholar
  77. King MJ (1994) Blood group antigens on human erythrocytes — Distribution, structure and possible functions. Biochim Biophys Acta 1197:15–44CrossRefGoogle Scholar
  78. Kleinzeller A (1996) William Hewson’s studies of red blood corpuscles and the evolving concept of a cell membrane. Am J Physiol 271:C1–C8Google Scholar
  79. Knowles DW, Tilley L, Mohandas N, Chasis JA (1997) Erythrocyte membrane vesicula-tion: model for the molecular mechanism of protein sorting. Proc Natl Acad Sci USA 94:12969–12974CrossRefADSGoogle Scholar
  80. Kuypers FA, Roelofsen B, Berendsen W, Op den Kamp JA, Van Deenen LL (1984) Shape changes in human erythrocytes induced by replacement of the native phosphatidylcholine with species containing various fatty acids. J Cell Biol 99:2260–2267CrossRefGoogle Scholar
  81. Lange Y, Slayton JM (1982) Interaction of cholesterol and lysophosphatidylcholine in determining red cell shape. J Lipid Res 23:1121–1127Google Scholar
  82. Lelkes G, Fodor I (1991) Formation of large, membrane skeleton-free erythrocyte vesicles as a function of the intracellular pH and temperature. Biochim Biophys Acta 1065:135–144CrossRefGoogle Scholar
  83. Lenormand G, Henon S, Richert A, Simeon J, Gallet F (2001) Direct measurement of the area expansion and shear moduli of the human red blood cell membrane skeleton. Biophys J 81:43–56CrossRefGoogle Scholar
  84. Leonards KS, Ohki S (1983) Isolation and characterization of large (0.5–1.0 micron) cy-toskeleton-free vesicles from human and rabbit erythrocytes. Biochim Biophys Acta 728:383–393CrossRefGoogle Scholar
  85. Lew VL, Bookchin RM (1986) Volume, pH, and ion-content regulation in human red cells: analysis of transient behavior with an integrated model. J Membrane Biol 92:57–74CrossRefGoogle Scholar
  86. Lin S, Huestis WH (1995) Wheat germ agglutinin stabilization of erythrocyte shape: role of bilayer balance and the membrane skeleton. Biochim Biophys Acta 1233:47–56CrossRefGoogle Scholar
  87. Lin S, Yang E, Huestis WH (1994) Relationship of phospholipid distribution to shape change in Ca+-crenated and recovered human erythrocytes. Biochemistry 33:7337–7344CrossRefGoogle Scholar
  88. Linss W, Pilgrim C, Feuerstein H (1991) How thick is the glycocalyx of human erythrocytes? Acta Histochem 91:101–104CrossRefGoogle Scholar
  89. Lovrien RE, Anderson RA (1980) Stoichiometry of wheat germ agglutinin as a morphology controlling agent and as a morphology protective agent for the human erythrocyte. J Cell Biol 85:534–548CrossRefGoogle Scholar
  90. Low PS, Willardson BM, Mohandas N, Rossi M, Shohet S (1991) Contribution of the band-3-ankyrin interaction to erythrocyte membrane mechanical stability. Blood 77:1581–1586Google Scholar
  91. Lux SE, Palek J (1995) Disorders of the red cell membrane. In: Handin RI, Lux SE, Stossel TP (eds) Blood. Principles and practice of hematology. J B Lippincott Company, Philadelphia, pp 1701–1818Google Scholar
  92. Macey RI, Adorante JS, Orme FW (1978) Erythrocyte membrane potentials determined by hydrogen ion distribution. Biochim Biophys Acta 512:284–295CrossRefGoogle Scholar
  93. Matayoshi ED (1980) Distribution of shape-changing compounds across the red cell membrane. Biochemistry 19:3414–3422CrossRefGoogle Scholar
  94. McGough AM, Josephs R (1990) On the structure of erythrocyte spectrin in partially expanded membrane skeletons. Proc Natl Acad Sci USA 87:5208–5212CrossRefADSGoogle Scholar
  95. Mehta NG (1983) Role of membrane integral proteins in the modulation of red cell shape by albumin, dinitrophenol and the glass effect. Biochim Biophys Acta 762:9–18CrossRefGoogle Scholar
  96. Mentzer WC, Lubin BH, Emmons S (1976) Correction of the permeability defect in hereditary stomatocytosis by dimethyladipimidate. N Engl J Med 294:1200–1204CrossRefGoogle Scholar
  97. Mohandas N, Chasis JA (1993) Red blood cell deformability, membrane material properties and shape: regulation by transmembrane, skeletal and cytosolic proteins and lipids. Semin Hematol 30:171–192Google Scholar
  98. Mohandas N, Feo C (1975) A quantitative study of the red cell shape changes produced by anionic and cationic derivatives of phenothiazine. Blood Cells 11:375–384Google Scholar
  99. Mohandas N, Greenquist AC, Shohet SB (1978) Bilayer balance and regulation of red cell shape changes. J Supramol Struct 9:453–458CrossRefGoogle Scholar
  100. Murdock RC, Reynolds C, Sarelius IH, Waugh RE (2000) Adaptation and survival of surface-deprived red blood cells in mice. Am J Physiol 279:C970–C980Google Scholar
  101. Nagle JF, Tristram-Nagle S (2000) Structure of lipid bilayers. Biochim Biophys Acta 1469:159–195CrossRefGoogle Scholar
  102. Nakao M (1990) Function and structure of red blood cell cytoskeleton. In: Harris JR (ed) Blood cell biochemistry, vol 1: Erythroid cells. Plenum Press, New York, pp 195–225Google Scholar
  103. Nakao M, Makao T, Yamazoe S (1960) Adenosine triphosphate and maintenance of shape of the human red cells. Nature 187:945–946CrossRefADSGoogle Scholar
  104. O’Toole PJ, Morrison IE, Cherry RJ (2000) Investigations of spectrin-lipid interactions using fluoresceinphosphatidylethanolamine as a membrane probe. Biochim Biophys Acta 1466:39–46CrossRefGoogle Scholar
  105. Patel VP, Fairbanks G (1981) Spectrin phosphorylation and shape change of human erythrocyte ghosts. J Cell Biol 88:430–440CrossRefGoogle Scholar
  106. Patel VP, Fairbanks G (1986) Relationship of major phosphorylation reactions and Mg-ATPase activities to ATP-dependent shape change of human erythrocyte membranes. J Biol Chem 261:3170–3177Google Scholar
  107. Pestonjamasp KN, Mehta NG (1995) Effect of antibodies to membrane skeletal proteins on the shape of erythrocytes and their ability to respond to shape-modulating agents. Important role of 4.1 protein in the determination/maintenance of the discoid shape of erythrocytes. Exp Cell Res 219:74–81CrossRefGoogle Scholar
  108. Peters LL, Shivdasani RA, Liu SC, Hanspal M, John KM, Gonzalez JM, Brugnara C, Gwynn B, Mohandas N, Alper SL, Orkin SH, Lux SE (1996) Anion exchanger 1 (band 3) is required to prevent erythrocyte membrane surface loss but not to form the membrane skeleton. Cell 86:917–927CrossRefGoogle Scholar
  109. Picart C, Discher DE (1999) Actin protofilament orientation at the erythrocyte membrane. Biophys J 77:865–878CrossRefGoogle Scholar
  110. Platt OS (1995) The sickle syndromes. In: Handin RI, Lux SE, Stossel TP (eds) Blood. Principles and practice of hematology. J B Lippincott Company, Philadelphia, pp 1645–1700Google Scholar
  111. Ponder E (1948) Hemolysis and related phenomena. Grune & Stratton, New YorkGoogle Scholar
  112. Poser B, Deuticke B (1999) Transbilayer flip-flop and steady state distribution of dodecyl-sulfate (SDS) in the erythrocyte membrane: flip vs. flux. Biol Chem 380:S56–S56Google Scholar
  113. Rand RP, Burton AC, Canham P (1965) Reversible changes in shape of red cells in electrical fields. Nature 205:977–978CrossRefADSGoogle Scholar
  114. Rasia M, Bollini A (1998) Red blood cell shape as a function of medium’s ionic strength and pH. Biochim Biophys Acta 1372:198–204CrossRefGoogle Scholar
  115. Raval PJ, Carter DP, Fairbanks G (1989) Relationship of hemolysis buffer structure, pH and ionic strength to spontaneous contour smoothing of isolated erythrocyte membranes. Biochim Biophys Acta 983:230–240CrossRefGoogle Scholar
  116. Schmid-Schönbein H, Grebe R, Heidtmann H (1983) A new membrane concept for viscous RBC deformation in shear: spectrin oligomer complexes as a Bingham-fluid in shear and a dense periodic colloidal system in bending. Ann New York Acad Sci 416:225–254CrossRefADSGoogle Scholar
  117. Schrier SL, Zachowski A, Herve P, Kader JC, Devaux PF (1992) Transmembrane redistribution of phospholipids of the human red cell membrane during hypotonic hemolysis. Biochim Biophys Acta 1105:170–176CrossRefGoogle Scholar
  118. Schwarz S, Deuticke B, Haest CWM (1999a) Passive transmembrane redistributions of phospholipids as a determinant of erythrocyte shape change. Studies on electroporated cells. Mol Membr Biol 16:247–255CrossRefGoogle Scholar
  119. Schwarz S, Haest CWM, Deuticke B (1999b) Extensive electroporation abolishes experimentally induced shape transformations of erythrocytes: a consequence of phospholipid symmetrization? Biochim Biophys Acta 1421:361–379CrossRefGoogle Scholar
  120. Schwarz S (2000) Zum Einfluss von elektrischen Feldpulsen auf Dynamik und transversale Orientierung der Phospholipide in der Erythrocytenmembran. MD thesis RWTH AachenGoogle Scholar
  121. Seeman P (1972) The membrane actions of anesthetics and tranquilizers. Pharmacol Rev 24:583–655Google Scholar
  122. Sheetz MP (1983) Membrane skeletal dynamics: role in modulation of red cell deform-ability, mobility of transmembrane proteins, and shape. Semin Hematol 20:175–188Google Scholar
  123. Sheetz MP, Sawyer D (1978) Triton shells of intact erythrocytes. J Supramol Struct 8:399–412CrossRefGoogle Scholar
  124. Sheetz MP, Singer SJ (1974) Biological membranes as bilayer couples. A molecular mechanism of drug-erythrocyte interactions. Proc Natl Acad Sci USA 71:4457–4461CrossRefADSGoogle Scholar
  125. Sheetz MP, Singer SJ (1976) Equilibrium and kinetic effects of drugs on the shapes of human erythrocytes. J Cell Biol 70:247–251CrossRefGoogle Scholar
  126. Shen BW (1989) Ultrastructure and function of membrane skeleton. In: Agre P, Parker JC (eds) Red blood cell membranes. Marcel Dekker, New York, pp 261–297Google Scholar
  127. Simons TJ (1979) Vanadate — a new tool for biologists. Nature 281:337–338CrossRefADSGoogle Scholar
  128. Smith SK, Farnbach AR, Harrist FM, Hawes AC, Jackson LR, Judd AM, Vest RS, Sanchez S, Bell JD (2001) Mechanisms by which intracellular calcium induces susceptibility to secretory phospholipase A2 in human erythrocytes. J Biol Chem 276:22732–22741CrossRefGoogle Scholar
  129. Steck TL (1989) Red cell shape. In: Stein W, Brouner F (eds) Cell shape: Determinants, regulation and regulatory role. Academic Press, New York, pp 205–246Google Scholar
  130. Stewart GW, Argent AC, Dash BC (1993) Stomatin: a putative cation transport regulator in the red cell membrane. Biochim Biophys Acta 1225:15–25CrossRefGoogle Scholar
  131. Stokke BT, Mikkelsen A, Elgsaeter A (1986) Spectrin, human erythrocyte shapes, and mechanochemical properties. Biophys J 49:319–327CrossRefGoogle Scholar
  132. Takeuchi M, Miyamoto H, Sako Y, Komizu H, Kusumi A (1998) Structure of the erythrocyte membrane skeleton as observed by atomic force microscopy. Biophys J 74:2171–2183CrossRefGoogle Scholar
  133. Terada N, Fujii Y, Ohno S (1996) Three-dimensional ultrastructure of in situ membrane skeletons in human erythrocytes by quick-freezing and deep-etching method. Histol Histopathol 11:787–800Google Scholar
  134. Thelen B, Deuticke B (1988) Chemo-mechanical leak formation in human erythrocytes upon exposure to a water-soluble carbodiimide followed by very mild shear stress. I. Basic characteristics of the process. Biochim Biophys Acta 944:285–296CrossRefGoogle Scholar
  135. Tomishige M, Sako Y, Kusumi A (1998) Regulation mechanism of the lateral diffusion of band 3 in erythrocyte membranes by the membrane skeleton. J Cell Biol 142:989–1000CrossRefGoogle Scholar
  136. Trotter WD (1956) The slide-coverslip disc-sphere transformation in mammalian erythrocytes. Brit J Haemat 2:65–74CrossRefGoogle Scholar
  137. Truong HTN, Daleke DL, Huestis WH (1993) Human erythrocyte shape regulation: interaction of metabolic and redox status. Biochim Biophys Acta 1150:51–56CrossRefGoogle Scholar
  138. Tse WT, Lux SE (1999) Red blood cell membrane disorders. Brit J Haematol 104:2–13CrossRefGoogle Scholar
  139. Tuvia S, Levin S, Bitler A, Korenstein R (1998) Mechanical fluctuations of the membrane-skeleton are dependent on F-actin ATPase in human erythrocytes. J Cell Biol 141:1551–1561CrossRefGoogle Scholar
  140. Verkleij AJ, Zwaal RF, Roelofsen B, Comfurius P, Kastelijn D, Van Deenen LL (1973) The asymmetric distribution of phospholipids in the human red cell membrane. A combined study using phospholipases and freeze-etch electron microscopy. Biochim Biophys Acta 323:178–193CrossRefGoogle Scholar
  141. Viitala J, Järnefelt J (1985) The red cell surface revisited. Trends Biochem Sci 10:392–395CrossRefGoogle Scholar
  142. Wagner GM, Chiu DT, Yee MC, Lubin BH (1986) Red cell vesiculation — a common membrane physiologic event. J Lab Clin Med 108:315–324Google Scholar
  143. Waugh RE (1982) Temperature dependence of the yield shear resultant and the plastic viscosity coefficient of erythrocyte membrane. Implications about molecular events during membrane failure. Biophys J 39:273–278CrossRefGoogle Scholar
  144. Waugh RE (1996) Elastic energy of curvature-driven bump formation on red blood cell membrane. Biophys J 70:1027–1035CrossRefGoogle Scholar
  145. Waugh RE, Narla N, Jackson CN, Mueller TJ, Suzuki T, Dale GL (1992) Rheologic properties of senescent erythrocytes. Loss of surface area and volume with red blood cell age. Blood 79:1351–1358Google Scholar
  146. White JG (1974) Effects of an ionophore, A 23187, on the surface morphology of normal erythrocytes. Am J Pathol 77:507–518Google Scholar
  147. Williamson P, Kulick A, Zachowski A, Schlegel RA, Devaux PF (1992) Ca2+ induces transbilayer redistribution of all major phospholipids in human erythrocytes. Biochemistry 31:6355–6360CrossRefGoogle Scholar
  148. Wong P (1994) Mechanism of control of erythrocyte shape: a possible relationship to band 3. J Theor Biol 171:197–205CrossRefGoogle Scholar
  149. Yan Y, Winograd E, Viel A, Cronin T, Harrison SC, Branton D (1993) Crystal structure of the repetitive segments of spectrin. Science 262:2027–2030CrossRefADSGoogle Scholar
  150. Zhang D, Kiyatkin A, Bolin JT, Low PS (2000) Crystallographic structure and functional interpretation of the cytoplasmic domain of erythrocyte membrane band 3. Blood 96:2925–2933Google Scholar
  151. Zimmermann U (1986) Electrical breakdown, electropermeabilization and electrofusion. Rev Physiol Biochem Pharmacol 105:175–256CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Bernhard Deuticke
    • 1
  1. 1.Institut für PhysiologieUniversitätsklinikum der RWTHAachenGermany

Personalised recommendations