Constructing Circle Patterns Using a New Functional

  • Boris A. Springborn
Conference paper
Part of the Mathematics and Visualization book series (MATHVISUAL)


The problem of constructing circle patterns with specific properties is reduced to minimizing an explicitely given function of the (logarithmic) radii. Images of circle patterns produced in this way are shown. The implementation of the target function is discussed.


circle packing circle pattern 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Brägger. Kreispackungen und Triangulierungen. Enseign. Math., 38: 20 1217, 1992.Google Scholar
  2. 2.
    A. 1. Bobenko and B. A. Springborn. Variational principles for circle patterns and Koebe's theorem. arXiv: math. GT/0203250, March 2002.Google Scholar
  3. 3.
    Y. Colin de Verdière. Un principe variationnel pour les empilements de cercles. Invent. Math., 104: 655 - 669, 1991.MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Tomasz Dubejko and Kenneth Stephenson. Circle packing: experiments in discrete analytic function theory. Experiment. Math., 4 (4): 307 - 348, 1995.MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    M. K. Hurdal, P. L. Bowers, K. Stephenson, et al. Quasi-conformally flat mapping the human cerebellum. In C. Taylor and A. Colchester, editors, Medical Image Computing and Computer-Assisted Intervention-MICCAI '99, volume 1679 of Lecture Notes in Computer Science, pages 279 286, Berlin, 1999. Springer.Google Scholar
  6. 6.
    G. Leibon. Characterizing the Delaunay decompositions of compact hyperbolic surfaces. Geom. Topol., 6: 361 - 391, 2002.MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. Numerical recipes in C. Cambridge University Press, Cambridge, second edition, 1992.zbMATHGoogle Scholar
  8. 8.
    I. Rivin. Euclidean structures of simplicial surfaces and hyperbolic volume. Ann. of Math., 139: 553 - 580, 1994.MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    B. Rodin and D. Sullivan. The convergence of circle packings to the Riemann mapping. J. Differential Geom., 26: 349 - 360, 1987.MathSciNetzbMATHGoogle Scholar
  10. 10.
    O. Schramm. Circle patterns with the combinatorics of the square grid. Duke Math. J., 86 (2): 347 - 389, 1997.MathSciNetzbMATHGoogle Scholar
  11. 11.
    Sfb 288. Java tools for experimental mathematics. http: //www. Scholar
  12. 12.
    W. P. Thurston. The geometry and topology of three-manifolds. Electronic version 1.0 of 1997 currently provided by the MSRI under Scholar
  13. 13.
    L. Lewin. Polylogarithms and Associated Functions. North Holland, New York, 1981.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Boris A. Springborn
    • 1
  1. 1.Institut für Mathematik, Sekr. 8-5Technische Universität BerlinBerlinGermany

Personalised recommendations