The Role of Apoptosis in Neuroinflammation

  • F. Zipp
  • O. Aktas
  • J. D. Lünemann
Conference paper
Part of the Ernst Schering Research Foundation Workshop book series (SCHERING FOUND, volume 39)


Inflammatory diseases of the central nervous system (CNS) play a major role in clinical neurology. It is currently under debate whether inflammatory processes determine the outcome in, for example, brain injury (Woiciechowsky et al. 1998) and cerebral ischemia (Dirnagl et al. 1999). The classical and most demanding acute inflammatory disease of the CNS is bacterial meningitis which still displays a mortality rate of about 20%, despite effective antibiotic treatment (Schuchat et al. 1997). The functional outcome of bacterial meningitis regarding long-term sequelae is dictated by neuronal injury that leads to seizures, paralysis, and cognitive deficits in survivors. The most common chronic inflammatory disease of the CNS in Northern America and Europe, which causes prolonged and severe disability in young adults, is multiple sclerosis (MS). MS is thought to be an autoimmune disorder with demyelination and axonal pathology leading to clinical symptoms (Noseworthy et al. 2000). The pathogenesis in both bacterial meningitis and multiple sclerosis has not been completely elucidated, and therapies are still inefficient despite the progress made thus far. The heterogeneous clinical course of both meningitis and multiple sclerosis requires individual treatment. Since overall therapeutic options are still lacking, clinical and experimental approaches have been aimed towards identifying genes to advance pathogenetic explanation, discover predisposing parameters for various forms of the disease, and elicit suitable therapeutic strategies.


Multiple Sclerosis Experimental Autoimmune Encephalomyelitis Bacterial Meningitis Experimental Allergic Encephalomyelitis Pneumococcal Meningitis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aktas O, Osmanova V, Beyer M, Brocke S, Zipp F (2001) Therapeutic modulation of the TRAIL system in autoimmune CNS inflammation. J Neuroimmunol 118 /1: 52Google Scholar
  2. Ashkenazi A, RC Pai, S Fong, S Leung, DA Lawrence, SA Marsters, C Blackie, L Chang, AE McMurtrey, A Hebert, L DeForge, IL Koumenis, D Lewis, L Harris, J Bussiere, H Koeppen, Z Shahrokh, RH Schwall (1999) Safety and antitumor activity of recombinant soluble Apo2 ligand. J Clin Invest 104: 155PubMedCrossRefGoogle Scholar
  3. Bachmann R, Eugster HP, Frei K, Fontana A, Lassmann H (1999) Impairment of TNF-receptor-1 signaling but not fas signaling diminishes T-cell apoptosis in myelin oligodendrocyte glycoprotein peptide-induced chronic demyelinating autoimmune encephalomyelitis in mice. Am J Pathol 154: 1417–1422PubMedCrossRefGoogle Scholar
  4. Bechmann I, Mor G, Nilsen J, Eliza M, Nitsch R, Naftolin F (1999) FasL (CD95L, Apo1L) is expressed in the normal rat and human brain: evidence for the existence of an immunological brain barrier. Glia 27: 62–74PubMedCrossRefGoogle Scholar
  5. Bechmann I, Lossau S, Steiner B, Mor G, Gimsa U, Nitsch R (2000) Reactive astrocytes upregulate fas (CD95) and fas ligand (CD95L) expression but do not undergo programmed cell death during the course of anterograde degeneration. Glia 32: 25–41PubMedCrossRefGoogle Scholar
  6. Bitsch A, Kuhlmann T, da Costa C, Bunkowski S, Polak T, Brück W (2000) Tumour necrosis factor alpha mRNA expression in early multiple sclerosis lesions: correlation with demyelinating activity and oligodendrocyte pathology. Glia 29: 366–375PubMedCrossRefGoogle Scholar
  7. Boise LH, Gonzales-Garcia M, Postema CEDL, Lindsten T, Turka LA, Mao X, Nunez G, Thomson CB (1993) bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell 74: 597–608Google Scholar
  8. Braun JS, Tuomanen EI (1999) Molecular mechanisms of brain damage in bacterial meningitis. Adv Ped Infect Dis 14: 49–72Google Scholar
  9. Braun JS, Novak R, Herzog K-H, Bodner SM, Cleveland JC, Tuomanen EI (1999) Neuroprotection by a caspase inhibitor in pneumococcal meningitis. Nat Med 5: 298–302PubMedCrossRefGoogle Scholar
  10. Brunner T, Mogil RJ, LaFace D, Yoo NJ, Mahboubi A, Echeverri F, Martin SJ, Force WR, Lynch DH, Ware CF, et al (1995) Cell-autonomous Fas (CD95)/Fas-ligand interaction mediates activation-induced apoptosis in T-cell hybridomas. Nature 373: 441–444PubMedCrossRefGoogle Scholar
  11. Chou AH, Tsai HF, Lin LL, Hsieh SL, Hsu PI, Hsu PN (2001) Enhanced proliferation and increased interferon-y production by signal transduced through TNF-related apoptosis-inducing ligand. J Immunol 167: 1347–1352PubMedGoogle Scholar
  12. D’Souza SD, Bonetti B, Balasingam V, Cashman NR, Barker PA, Troutt AB, Raine CS, Antel JP (1996) Multiple sclerosis: Fas signaling in oligodendrocyte cell death. J Exp Med 184: 2361–2370Google Scholar
  13. Degli-Esposti MA, Dougall WC, Smolak PJ, Waugh JY, Smith CA, Goodwin RG (1997a) The novel receptor TRAIL-R4 induces NF-kappaB and protects against TRAIL-mediated apoptosis, yet retains an incomplete death domain. Immunity 7: 813–820PubMedCrossRefGoogle Scholar
  14. Degli-Esposti MA, Smolak PJ, Walczak H, Waugh J, Huang C-P, DuBose RF, Goodwin RG, Smith CA (1997b) Cloning and characterization of TRAIL-R3, a novel member of the emerging TRAIL receptor family. J Exp Med 186: 1165–1170PubMedCrossRefGoogle Scholar
  15. Dhein J, Walczak H, Baumler C, Decatin KM, Krammer PH (1995) Autocrine T-cell suicide mediated by APO-1(Fas/CD95). Nature 373: 438–441PubMedCrossRefGoogle Scholar
  16. Dirnagl U, Iadecola C, Moskowitz MA (1999) Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci 22: 391–397PubMedCrossRefGoogle Scholar
  17. Dittel BN, Merchant RM, Janeway CA (1999) Evidence for Fas-dependent and Fas-independent mechanisms in the pathogenesis of experimental autoimmune encephalomyelitis. J Immunol 162: 6392–6400PubMedGoogle Scholar
  18. Dowling P, Shang G, Raval S, Menonna J, Cook S, Husar W (1996) Involvement of the CD95 (APO-1/Fas) Receptor/Ligand System in Multiple Sclerosis Brain. J Exp Med 184: 1513–1518PubMedCrossRefGoogle Scholar
  19. Emery JG, McDonnell P, Burke MB, Deen KC, Lyn S, Silverman C, Dul E, Appelbaum ER, Eichman C, DiPrinzio R, Dodds RA, James IE, Rosenberg M, Lee JC, Young PR (1998) Osteoprotegerin is a receptor for the cytotoxic ligand TRAIL. J Biol Chem 273: 14363PubMedCrossRefGoogle Scholar
  20. Ferguson B, MK Matyszak, MM Esiri, VH Perry (1997) Axonal damage in acute multiple sclerosis lesions. Brain 120: 393–390PubMedCrossRefGoogle Scholar
  21. Flügel A, Schwaiger FW, Neumann H, Medana I, Willem M, Wekerle H, Kreutzberg GW, Graeber MB (2000) Neuronal FasL induces cell death of encephalitogenic T lymphocytes. Brain Pathol 10: 353–364PubMedCrossRefGoogle Scholar
  22. Freyer D, Manz R, Ziegenhorn A, Weih M, Angstwurm K, Döcke WD, Meisel A, Schumann RR, Schönfelder G, Dirnagl U, Weber JR (1999) Cerebral endothelial cells release TNF-a after stimulation with cell walls of Streptococcus pneumoniae and regulate iNOS and ICAM-1 expression via autocrine loops. J Immunol 163: 4308–4314PubMedGoogle Scholar
  23. Gniadeck P, Aktas O, Claussnitzer A, Wendling U, Obert H, Zipp F (2000) Modulation of apoptosis in MS under therapy with interferon (IFN)-131A. Rev Neurol 3S: 76Google Scholar
  24. Gold R, Hartung HP, Lassmann H (1997) T-cell apoptosis in autoimmune diseases: termination of inflammation in the nervous system and other sites with specialized immune-defense mechanisms. Trends Neurosci 20: 399–404PubMedCrossRefGoogle Scholar
  25. Griffith TS, Herndon JM, Lima J, Kahn M, Ferguson TA (1995) The immune response and the eye. TCR alpha-chain related molecules regulate the systemic immunity to antigen presented in the eye. Int Immunol 7: 1617–1625Google Scholar
  26. Hilliard B, Wilmen A, Seidel C, Liu TS, Goke R, Chen Y (2001) Roles of TNF-Related Apoptosis-Inducing Ligand in Experimental Autoimmune Encephalomyelitis. J Immunol 166: 1314–1319PubMedGoogle Scholar
  27. Hisahara S, Araki T, Sugiyama F, Yagami KI, Suzuki M, Abe K, Yamamura KI, Miyazaki JI, Momoi T, Saruta T, Bernard CC, Okano H, Miura M (2000) Targeted expression of baculovirus p35 caspase inhibitor in oligodendrocytes protects mice against autoimmune-mediated demyelination. EMBO J 19: 341–348PubMedCrossRefGoogle Scholar
  28. Hockenbery D, Nunez G, Milliman C, Schreiber RD, Korsmeyer SJ (1990) Bel-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 348: 334–336PubMedCrossRefGoogle Scholar
  29. Hohlfeld R, E Meinl, F Weber, F Zipp, S Schmidt, S Sotgiu, N Goebels, R Voltz, S Spuler, A Iglesias, H Wekerle (1995) The role of autoimmune T lymphocytes in the pathogenesis of multiple sclerosis. Neurology 45 (56): 33–38CrossRefGoogle Scholar
  30. Huang W-X, Huang MP, Gomes MA, Hillert J (2000) Apoptosis mediators fasL and TRAIL are upregulated in peripheral blood mononuclear cells in MS. Neurology 55: 928–934PubMedCrossRefGoogle Scholar
  31. Issazadeh S, Abdallah K, Chitnis T, Chandraker A, Wells AD, Turka LA, Sayegh MH, Khoury SJ (2000) Role of passive T-cell death in chronic experimental autoimmune encephalomyelitis. J Clin Invest 105: 1109–1116PubMedCrossRefGoogle Scholar
  32. Jo M, Kim TH, Seol DW, Esplen J, Dorko K, Billiar TR, Strom SC (2000) TNF-related apoptosis inducing ligand ( TRAIL)-induced apoptosis in normal human hepatocytes. Nat Med 6: 564–567Google Scholar
  33. Karpus WJ, Ransohoff RM (1998) Chemokine regulation of experimental autoimmune encephalomyelitis: temporal and spatial expression patterns govern disease pathogenesis. J Immunol 161: 2667–2671PubMedGoogle Scholar
  34. Kaser A, Deisenhammer F, Berger T, Tilg H (1999) Interferon-beta lb augments activation-induced T-cell death in multiple sclerosis patients. Lancet 353: 1413–1414PubMedCrossRefGoogle Scholar
  35. Kornek B, Storch MK, Weissert R, Wallstroem E, Stefferl A, Olsson T, Linington C, Schmidbauer M, Lassmann H (2000) Multiple sclerosis and chronic autoimmune encephalomyelitis: a comparative quantitative study of axonal injury in active, inactive, and remyelinated lesions. Am J Pathol 157: 267–276PubMedCrossRefGoogle Scholar
  36. Krammer PH (1998) CD95(APO-1/Fas)-mediated apoptosis: Live and let die. Adv Immunol 71: 163–210CrossRefGoogle Scholar
  37. Krammer PH, Galle PR, Möller P, Debatin KM (1998) CD95 (APO-1/Fas)mediated apoptosis in normal and malignant liver, colon, and hematopoetic cells. Ernst Schering Research Foundation, Academic PressGoogle Scholar
  38. Kuhlmann T, Lucchinetti C, Zettl UK, Bitsch A, Lassmann H, Brack W (2000) Bcl-2-expressing oligodendrocytes in multiple sclerosis lesions. Glia 28: 34–39CrossRefGoogle Scholar
  39. Leib SL, Kim YS, Chow LL, Sheldon RA, Tauber MG (1996) Reactive oxygen intermediates contribute to necrotic and apoptotic neuronal injury in an infant rat model of bacterial meningitis due to group B streptococci. J Clin Invest 98: 2632–2639PubMedCrossRefGoogle Scholar
  40. Lenardo M, Chan KM, Hornung F, McFarland H, Siegel R, Wang J, Zheng L (1999) Mature T lymphocyte apoptosis-immune regulation in a dynamic and unpredictable antigenic environment. Annu Rev Immunol 17: 221–253PubMedCrossRefGoogle Scholar
  41. Lenercept Multiple Sclerosis Study Group, The University of British Columbia MS/MRI Analysis Group (1999) TNF neutralization in MS: results of a randomized, placebo-controlled multicenter study. Neurology 53: 457–465Google Scholar
  42. Liu J, Marino MW, Wong G, Grail D, Dunn A, Bettadapura J, Slavin AJ, Old L, Bernard CC (1999) TNF is a potent anti-inflammatory cytokine in autoimmune-mediated demyelination. Nat Med 4: 78–83CrossRefGoogle Scholar
  43. Lünemann JD, Waiczies S, Wendling U, Ehrlich S, Seeger B, Kamradt T, Zipp F (2001) Death ligand TRAIL inhibits proliferation of human (auto)antigen-specific T cells without inducing apoptosis or clonal anergy. J Neuroimmunol 118 /1: 101Google Scholar
  44. Malipiero U, Frei K, Spanaus K-S, Agresti C, Lassmann H, Hahne M, Tschopp J, Eugster H-P, Fontana A (1997) Myelin oligodendrocyte glycoprotein-induced encephalomyelitis is chronic/relapsing in perforin knockout mice, but monophasic in Fas-and Fas ligand-deficient 1pr and gld mice. Eur J Immunol 27: 3151–3160PubMedCrossRefGoogle Scholar
  45. Martin R, McFarland HF, McFarlin DE (1992) Immunological aspects of demyelinating diseases. Annu Rev Immunol 10: 153–187PubMedCrossRefGoogle Scholar
  46. Martino G, Hartung HP (1999) Immunopathogenesis of multiple sclerosis: the role of T cells. Curr Opin Neurol 12: 309–321PubMedCrossRefGoogle Scholar
  47. Medana IM, Gallimore A, Oxenius A, Martinic MM, Wekerle H, Neumann H (2000) MHC class I-restricted killing of neurons by virus specific CD8+ T lymphocytes is effected through the Fas/FasL, but not the perforin pathway. Eur J Immunol 30: 3623–3633PubMedCrossRefGoogle Scholar
  48. Meyer R, Weissert R, Diem R, Storch MK, de Graaf KL, Kramer B, Bähr M (2001) Acute neuronal apoptosis in a rat model of multiple sclerosis. J Neuroscience 21: 6214–6220Google Scholar
  49. Nagatani T, Okazawa H, Kambara T, Satoh K, Nishiyama T, Tokura H, Yamada R, Nakajima H (1998) Effect of natural interferon-beta on the growth of melanoma cell lines. Melanoma Res 8: 295–299PubMedCrossRefGoogle Scholar
  50. Nitsch R, Bechmann I, Deisz RA, Haas DLTN, Wendling U, Zipp F (2000) Massive cell death induced by tumor-necrosis factor-related apoptosis-inducing ligand ( TRAIL) in adult human brain tissue. Lancet 356: 827–828Google Scholar
  51. Noseworthy JH, Lucchinetti C, Rodriguez M, Weinshenker BG (2000) Multiple Sclerosis. New Engl J Med 343: 938–950PubMedCrossRefGoogle Scholar
  52. Oltvai ZN, Milliman ZL, Korsmeyer SJ (1993) Bel-2 heterodimerizes in vivo with a conserved homolog, Box, that accelerates programmed cell death. Cell 74: 609–619Google Scholar
  53. Pan G, Ni J, Wei Y, Yu G, Gentz R, Dixit VM (1997a) An antagonist decoy receptor and a death domain-containing receptor for TRAIL. Science 277: 815–818PubMedCrossRefGoogle Scholar
  54. Pan G, O’Rourke K, Chinnaiyan AM, Gentz R, Ebner R, Ni J, Dixit VM (1997b) The Receptor for the Cytotoxic Ligand TRAIL. Science 276: 111–113PubMedCrossRefGoogle Scholar
  55. Pender MP, Nguyen KB, McCombe PA, Kerr JF (1991) Apoptosis in the nervous system in experimental allergic encephalomyelitis. J Neurol Sci 104: 81–87PubMedCrossRefGoogle Scholar
  56. Pilling D, Akbar AN, Girdlestone J, Orteu CH, Borthwick NJ, Amft, Scheel TD, Buckley CD, Salmon M (1999) Interferon-beta mediates stromal cell rescue of T cells from apoptosis. Eur J Immunol 29: 1041–1050PubMedCrossRefGoogle Scholar
  57. Pitti RM, Marsters SA, Ruppert S, Donahue CJ, Moore A, Ashkenazi A (1996) Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family. J Biol Chem 271: 12687–12690PubMedCrossRefGoogle Scholar
  58. Pouly S, Becher B, Blain M, Antel JP (2000) Interferon-y modulates human oligodendrocyte susceptibility to Fas-mediated apoptosis. J Neuropathol Exp Neurol 59: 280–286PubMedGoogle Scholar
  59. Raine CS, Canella B (1992) Adhesion molecules and central nervous system inflammation. Semin Neurosci 4: 201–211CrossRefGoogle Scholar
  60. Reed JC (1994) Bcl-2 and the regulation of programmed cell death. J Cell Biol 124: 1–6PubMedCrossRefGoogle Scholar
  61. Rep MH, Schrijver HM, van Lopik T, Hintzen RQ, Roos MT, Ader HJ, Polman CH, van Lier RA (1999) Interferon (IFN)-beta treatment enhances CD95 and interleukin 10 expression but reduces interferon-gamma producing T cells in MS patients. J Neuroimmunol 96: 92–100PubMedCrossRefGoogle Scholar
  62. Roth W, Wagenknecht B, Dichgans J, Weller M (1998) Interferon-alpha enhances CD95L-induced apoptosis of human malignant glioma cells. J Neuroimmunol 87: 121–129PubMedCrossRefGoogle Scholar
  63. Roth W, Isenmann S, Naumann U, Kugler S, Bahr M, Dichgans J, Ashkenazi A, Weller M (1999) Locoregional Apo2L/TRAIL eradicates intracranial human malignant glioma xenografts in athymic mice in the absence of neuro-toxicity. Biochem Bioph Res Co 265: 479CrossRefGoogle Scholar
  64. Sabelko KA, Kelly KA, Nahm MH, Cross AH, Russell JH (1997) Fas and Fas ligand enhance the pathogenesis of experimental allergic encephalomyelitis, but are not essential for immune privilege in the central nervous system. J Immunol 159: 3096–3099PubMedGoogle Scholar
  65. Sabelko-Downes KA, Cross AH, Russell JH (1999) Dual role for Fas ligand in the initiation of and recovery from experimental allergic encephalomyelitis. J Exp Med 189: 1195–1205PubMedCrossRefGoogle Scholar
  66. Schmied M, Breitschopf H, Gold R, Zischler H, Rothe G, Wekerle H, Lass-mann H (1993) Apoptosis of T lymphocytes in experimental autoimmune encephalomyelitis. Evidence for programmed cell death as a mechanism to control inflammation in the brain. Am J Pathol 143: 446–452Google Scholar
  67. Schuchat A, Robinson K, Wenger JD, Harrison LH, Farley M, Reingold AL, Lefkowitz L, Perkins BA (1997) Bacterial meningitis in the United States in 1995. Active Surveillance Team. N Engl J Med 337: 970–976Google Scholar
  68. Schumann RR, Pfeil D, Freyer D, Buerger W, Lamping N, Kirschning CJ, Goebel UB, Weber JR (1998) Lipopolysaccharide and pneumococcal cell wall components activate the mitogen activated protein kinases (MAPK) erk-1, erk-2 and p38 in astrocytes. Glia 22: 295–305PubMedCrossRefGoogle Scholar
  69. Selleri C, Sato T, Del Vecchio L, Luciano L, Barrett Al, Rotoli B, Young NS, Maciejewski JP (1997) Involvement of Fas-mediated apoptosis in the inhibitory effects of interferon-a in chronic myelogenous leukemia. Blood 89: 957–964PubMedGoogle Scholar
  70. Semra YK, Seidi OA, Sharief MK (2001) Overexpression of the apoptosis inhibitor FLIP in T cells correlates with disease activity in multiple sclerosis. J Neuroimmunol 113: 268–274PubMedCrossRefGoogle Scholar
  71. Sheridan JP, Marsters S, Pitti RM, Gurney A, Skubatch M, Baldwin D, Ramakrishnan L, Gray CL, Baker K, Wood WI, Goddard AD, Godowski P, Ashkenazi A (1997) Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors. Science 277: 818–821PubMedCrossRefGoogle Scholar
  72. Shevach EM (2000) Regulatory T cells in autoimmunity. Annu Rev Immunol 18: 423–449PubMedCrossRefGoogle Scholar
  73. Smith T, Groom A, Zhu B, Turski L (2000) Autoimmune encephalomyelitis ameliorated by AMPA antagonists. Nat Med 6: 62–66PubMedCrossRefGoogle Scholar
  74. Song K, Chen Y, Goke R, Wilmen A, Seidel C, Goke A, Hilliard B (2000) Tumor necrosis factor-related apoptosis-inducing ligand ( TRAIL) is an inhibitor of autoimmune inflammation and cell cycle progression. J Exp Med 191: 1095–1103Google Scholar
  75. Suvannavejh GC, Dal Canto MC, Matis L, Miller SD (2000) Fas-mediated apoptosis in clinical remissions of relapsing experimental autoimmune encephalomyelitis. J Clin Invest 105: 223–231PubMedCrossRefGoogle Scholar
  76. Sytwu HK, Liblau RS, McDevitt HO (1996) The roles of Fas/APO-1 (CD95) and TNF in antigen-induced programmed cell death in T cell receptor trans-genic mice. Immunity 5: 17–30PubMedCrossRefGoogle Scholar
  77. Tuomanen EI, Saukkonen K, Sande S, Cioffe C, Wright SD (1989) Reduction of inflammation, tissue damage, and mortality in bacterial meningitis in rabbits treated with monoclonal antibodies against adhesion-promoting receptors of leukocytes. J Exp Med 170: 959–969PubMedCrossRefGoogle Scholar
  78. van Oosten BW, Barkhof F, Truyen L, Boringa JB, Bertelsmann FW, von Blomberg BM, Woody JN, Hartung HP, Polman CH (1996) Increased MRI activity and immune activation in two multiple sclerosis patients treated with the monoclonal anti-tumor necrosis factor antibody cA2. Neurology 47: 1531–1534PubMedCrossRefGoogle Scholar
  79. van Parijs L, Peterson DA, Abbas AK (1998) The Fas/Fas ligand pathway and bc1–2 regulate T cell responses to model self and foreign antigens Immunity 8: 265–274Google Scholar
  80. Walczak H, Degli Esposti MA, Johnson RS, Smolak PJ, Waugh JY, Boiani N, Timour MS, Gerhart MJ, Schooley KA, Smith CA, Goodwin R, Rauch CT (1997) TRAIL-R2: a novel apoptosis-mediating receptor for TRAIL. EMBO J 16: 5386–5397PubMedCrossRefGoogle Scholar
  81. Walczak, H, Miller RE, Ariail K, Gliniak B, Griffith TS, Kubin M, Chin W, Jones J, Woodward A, Le T, Smith C, Smolak P, Goodwin RG, Rauch CT, Schuh JC, Lynch DH (1999) Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat Med 5: 157PubMedCrossRefGoogle Scholar
  82. Waldner H, Sobel RA, Howard E, Kuchroo VK (1997) Fas-and FasL-deficient mice are resistant to induction of autoimmune encephalomyelitis J Immunol 159: 3100–3103Google Scholar
  83. Weber F, Meinl E, Aloisi F, Nevinny-Stickel C, Albert E, Wekerle H, Hohlfeld R (1994) Human astrocytes are only partially competent antigen presenting cells. Possible implications for lesion development in multiple sclerosis. Brain 117: 1323–1332Google Scholar
  84. Wekerle H, Kojima K, Lannes-Vieira J, Lassmann H, Linington C (1994) Animal models. Ann Neurol 36: S47–53CrossRefGoogle Scholar
  85. Wendling U, Walczak H, Dörr J, Jaboci C, Weller M, Krammer PH, Zipp F (2000) Expression of TRAIL receptors in human autoreactive and foreign antigen-specific T cells. Cell Death Differ 7: 637–644PubMedCrossRefGoogle Scholar
  86. Wildbaum G, Westermann J, Maor G, Karin N (2000) A targeted DNA vaccine encoding fas ligand defines its dual role in the regulation of experimental autoimmune encephalomyelitis. J Clin Invest 106: 671–679PubMedCrossRefGoogle Scholar
  87. Wiley SR, Schooley K, Smolak PJ, Din WS, Huang CP, Nicholl JK, Sutherland GR, Smith TD, Rauch C, Smith CA, Goodwin RG (1995) Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity 3: 673–682CrossRefGoogle Scholar
  88. Williams K, Ulvestad E, Antel JP (1994) B7/BB-1 antigen expression on adult human microglia studied in vitro and in situ. Eur J Immunol 24: 3031–3037PubMedCrossRefGoogle Scholar
  89. Woiciechowsky C, Asadullah K, Nestler D, Eberhardt B, Platzer C, Schoning B, Glockner F, Lanksch WR, Volk HD, Docke WD (1998) Sympathetic activation triggers systemic interleukin-10 release in immunodepression induced by brain injury. Nat Med 4: 808–813PubMedCrossRefGoogle Scholar
  90. Yang E, Korsmeyer SJ (1996) Molecular thanatopsis: a discourse on the bc1–2 family and cell death. Blood 88: 386–401PubMedGoogle Scholar
  91. Zang YC, Kozovska MM, Hong J, Li S, Mann S, Killian JM, Rivera VM, Zhang JZ (1999) Impaired apoptotic deletion of myelin basic protein-reactive T cells in patients with multiple sclerosis. Eur J Immunol 29: 1692–1700PubMedCrossRefGoogle Scholar
  92. Zipp F, Otzelberger K, Dichgans J, Martin R, Weller M (1998a) Serum CD95 of multiple sclerosis patients protects from CD95-mediated apoptosis. J Neuroimmunol 86: 151–154PubMedCrossRefGoogle Scholar
  93. Zipp F, Weller M, Calabresi PA, Frank JA, Bash CN, Dichgans J, McFarland H, Martin R (1998b) Increased serum levels of soluble CD95 (APO1/Fas) in relapsing remitting multiple sclerosis. Ann Neurol 43: 116–120PubMedCrossRefGoogle Scholar
  94. Zipp F, Krammer PH, Weller M (1999) Immune (dys)regulation in multiple sclerosis: role of the CD95/CD95 ligand system. Immunol Today 20: 550–554PubMedCrossRefGoogle Scholar
  95. Zipp F, Beyer M, Gelderblom H, Wernet D, Zschenderlein R, Weller M (2000a) No induction of apoptosis by IFN-13 in human. Neurology 54: 524–526CrossRefGoogle Scholar
  96. Zipp F, Wendling U, Beyer M, Grieger U, Waiczies S, Wagenknecht B, Haas J, Weller M (2000b) Dual effect of glucocorticoids on apoptosis of human autoreactive and foreign antigen-specific T cells. J Neuroimmunol 110: 214PubMedCrossRefGoogle Scholar
  97. Zysk G, Bruck W, Gerber J, Bruck Y, Prange HW, Nau R (1996) Anti-inflammatory treatment influences neuronal apoptotic cell death in the dentate gyms in experimental pneumococcal meningitis. J Neuropathol Exp Neurol 55: 722–728PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • F. Zipp
  • O. Aktas
  • J. D. Lünemann

There are no affiliations available

Personalised recommendations