Coherent Risk Measures on General Probability Spaces

  • Freddy Delbaen


We extend the definition of coherent risk measures, as introduced by Artzner, Delbaen, Eber and Heath, to general probability spaces and we show how to define such measures on the space of all random variables. We also give examples that relates the theory of coherent risk measures to game theory and to distorted probability measures. The mathematics are based on the characterisation of closed convex sets of probability measures that satisfy the property that every random variable is integrable for at least one probability measure in the set .

Key words

capital requirement coherent risk measure capacity theory convex games insurance premium principle measure of risk Orlicz spaces Quantile Scenario Shortfall Subadditivity submodular functions value at risk 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ph. Artzner, J.-M. Eber, F. Delbaen, and D. Heath. Thinking coherently. RISK, pages 68–71, November 1997.Google Scholar
  2. 2.
    Ph. Artzner, J.-M. Eber, F. Delbaen, and D. Heath. Coherent measures of risk. submitted, 1998.Google Scholar
  3. 3.
    S. Banach. Théorie des opérations linéaires. Monografje Matamatyczne,1, 1932. Warsawa.Google Scholar
  4. 4.
    Bierlein. Über die Fortsetzung von Wahrscheinlichkeiten. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 1: 28–46, 1962.Google Scholar
  5. 5.
    E. Bishop and R.R. Phelps. A proof that every Banach space is subreflexive. Bull. Amer. Math. Soc., 67: 97–98, 1961.MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    G. Choquet. Theory of capacities. Ann. Inst. Fourier, 5: 131–295, 1953.MathSciNetCrossRefGoogle Scholar
  7. 7.
    F. Delbaen. Convex games and extreme points. Journ. Math. Anal. Appli., 45: 210–233, 1974.MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    F. Delbaen. Coherent risk measures. Lecture Notes of the Cattedra Galileiana at the Scuola Normale di Pisa, March 2000.Google Scholar
  9. 9.
    D. Denneberg. Verzerrte Wahrscheinlichkeiten in der Versicherungsmathematik, quantilabhängige Prämienprinzipien. Mathematik-Arbeitspapiere 34, Universität Bremen, 1989.Google Scholar
  10. 10.
    D. Denneberg. Non-Additive Measure and Integral. Kluwer, Dordrecht, 1997.Google Scholar
  11. 11.
    J. Diestel. Geometry of Banach space-selected topics. In Lecture Notes in Mathematics, volume 485. Springer-Verlag, Berlin Heidelberg New York, 1975.Google Scholar
  12. 12.
    N. Dunford and J. Schwartz. Linear Operators Vol I. Interscience, 1958.Google Scholar
  13. 13.
    P. Embrechts, C. Kliippelberg, and T. Mikosch. Modelling Extremal Events. Springer-Verlag, New York, 1997.zbMATHCrossRefGoogle Scholar
  14. 14.
    A. Grothendieck. Topological Vector Spaces. Gordon and Breach, New York, 1973.zbMATHGoogle Scholar
  15. 15.
    P. Halmos. Measure Theory. Van Nostrand, Princeton, N.J., 1950.zbMATHGoogle Scholar
  16. 16.
    J. Haezendonck and M. Goovaerts. A new premium calculation principle based on Orlicz norms. Insurance Math. Econom., 1: 41–53, 1982.MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    P. Halmos and L.J. Savage. Application of the Radon-Nikodym theorem to the theory of sufficient statistics. Ann. Math. Stat., 20: 225–241, 1949.MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    S. Jaschke and U. Kuchler. Coherent risk measures, valuation bonds and (t, a) portfolio optimisation. (preliminary version), 1999.Google Scholar
  19. 19.
    Y. Kabanov. Hedging and liquidation under transaction costs in currency markets. Finance and Stochastics, 3: 237–248, 1999.MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    J. Lindenstrauss. A short proof of Lyapounoff’s theorem. Journal of Math. Mech., 4: 971–972, 1966.Google Scholar
  21. 21.
    S. Maaß. Diplomarbeit. Master’s thesis, Universität Bremen, 1999.Google Scholar
  22. 22.
    I. Namioka. Partially ordered linear topological spaces. Mem. Amer. Math. Soc., 24, 1957.Google Scholar
  23. 23.
    J. Neveu. Discrete Parameter Martingales. North Holland, Amsterdam, 1975.zbMATHGoogle Scholar
  24. 24.
    O. Nikodym. Contribution à la théorie des fonctionnelles linéaires en connection avec la théorie de la measure des ensembles abstraits. Mathematica, 5: 130–141, 1931.Google Scholar
  25. 25.
    J. Parker. The sigma-core of a cooperative game. Manus. Math., 70: 247–253, 1991.zbMATHCrossRefGoogle Scholar
  26. 26.
    D. Schmeidler. Cores of convex games. J. Math. Anal. Appli., 40: 214–225, 1972.MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    D. Schmeidler. Integral representation without additivity. Proc. Amer. Math. Soc., 97: 255–261, 1986.MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    S.M. Ulam. Zur Maßtheorie in der allgemeinen Mengenlehre. Fund. Math., 16: 141–150, 1930.Google Scholar
  29. 29.
    P. Walley. Towards a unified theory of imprecise probability. Paper presented at the 1st International Symposium on Imprecise Probabilities and Their Applications, Ghent, Belgium June 29-July 2. This paper is available via ftp: // Scholar
  30. 30.
    P. Walley. Statistical Reasoning with Imprecise Probabilities. Chapman and Hall, London, 1991.zbMATHGoogle Scholar
  31. 31.
    Shaun Wang. Comonotonicity, Correlation Order and Premium Principles. Insurance Math. Econom., 22: 235–242, 1998.Google Scholar
  32. 32.
    K Yosida and E. Hewitt. Finitely additive measures. Trans. Amer. Math. Soc., 72: 46–66, 1952.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Freddy Delbaen
    • 1
  1. 1.Department of MathematicsEidgenössische Technische HochschuleZurichSwitzerland

Personalised recommendations