Advertisement

On the Iterative Solution of Ill-Conditioned Normal Equations by the Use of Lanczos Methods

  • J. Kusche
  • T. Mayer-Gürr
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 125)

Abstract

The determination of the earth’s exterior gravity field from noisy satellite observations lacks stability, due to the downward continuation process and due to data gaps. This property translates into an ill-conditioned least-squares problem. It is routinely solved after forming the normal equations and adding a constraint or covariance matrix which reflects the prior knowledge about the gravity field and accounts for regularization. In this contribution we investigate a modification: the use of Lanczos methods for the iterative solution of the problem, and, by controlled stopping and in combination with Tikhonov regularization, for suppressing the amplification of data noise. There are essentially two regularization parameters to be chosen properly: the Tikhonov parameter, and the number of iterations. Our simulations show that this can be done effiiciently by applying a cross-validation procedure on the satellite gravity data. However, further investigations are needed.

Keywords

Regularization Lanczos methods GOCE regional gravity recovery iterative solver 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Björck, Å. (1996). Numerical Methods for Least Squares Problems, SIAM, PhiladelphiaCrossRefGoogle Scholar
  2. ESA (1999). Gravity Field and Steady—State Ocean Circulation Mission, Reports for Mission Selection, ESA SP-1233 (1), ESTEC, NoordwijkGoogle Scholar
  3. Frommer, A., Maass, P. (1999). Fast CG-hased methods for Tikhonov—Phillips regularization, SIAM Journal on Scientific Computing 20: 1831–1850CrossRefGoogle Scholar
  4. Garcia, R. V. (2001). Local Geoid Determination from GRACE Mission, Ph.D. Dissertation, Ohio State UniversityGoogle Scholar
  5. Girard, D. A. (1989). A fast Monte—Carlo Cross—Validation pmcedure for large least-squares problems with noisy data, Num. Math. 56:1–23CrossRefGoogle Scholar
  6. Golub, G. H., Heath, M., Wahba, G (1979). Generalized cross-validation as a method for choosing a good ridge parameter, Technometrics 21: 215–223CrossRefGoogle Scholar
  7. Ilk K. H. (1993). Regularization for High Resolution Gravity Field Recovery by future Satellite Techniques, In Angerer, G., Gorenflo, R., Jochmann, H., Moritz, H., Webers, W. Inverse Problems: Principles and Applications in Geophysics Technology, and Medicine, Akademie Verlag, pp 189–214.Google Scholar
  8. Ilk, K. H., Visser, P., Kusche, J. (2001). IAG Special Commission VII ‘Satellite GravityField Missions’. Mid-term Report. www.geod.uni-bonn.de/SC7.html Google Scholar
  9. Ilk, K. H., Rummel, R., Thalhammer, M. (1995). Refiined Method for the Regional Recovery from GPS/SST and SGG, In: Study of the Gravity Field Determination using Gradiometry and GPS (Phase 2), CIGAR III/2, ESA contract No. 10713/93/F/FLGoogle Scholar
  10. Kilmer, M. E., O’Leary, D. P. (1998). Choosing Regularization Parameters in Iterative Methods for Ill-Posed Problems, Technical report CS-TR-3937, Department of Computer Science, University of MarylandGoogle Scholar
  11. Koch, K-R., Kusche, J. (2001). Regularization of geopotential determination from satellite data by variance components, Submitted to Journal of GeodesyGoogle Scholar
  12. Kusche, J., Klees, R. (2001). Regularization ofgravityfiield estimation from satellite gravity gradients, Submitted to Journal of GeodesyGoogle Scholar
  13. Lonkhuyzen, M., Klees, R., Bouman, J. (2001). Regularization for the Gravity Field Recovery from GOCE Observations, To be published in: Proceedings of the IAG Int. Symposium on Gravity, Geoid and Geodynamics 2000, BanffGoogle Scholar
  14. Paige, C. C., Saunders, M. A. (1982). LSQR. An algorithm for sparse linear equations and sparse least squares, ACM Trans. Math. Soft., 8:43–71CrossRefGoogle Scholar
  15. Xu, P. (1992). Determination of surface gravity anomalies using gradiometric observables, Geophysical Journal International 110:321–332CrossRefGoogle Scholar
  16. Xu, P. (1998). Truncated SVD methods for discrete linear ill-posed problems, Geophysical Journal International 135:505–514CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • J. Kusche
    • 1
  • T. Mayer-Gürr
    • 2
  1. 1.Department of GeodesyTU DelftDelftThe Netherlands
  2. 2.Institute of Theoretical GeodesyUniversity of BonnBonnGermany

Personalised recommendations