Estimation of Station Heights with GPS

  • M. Rothacher
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 124)


Many different effects are contributing to the fact that station heights may be determined less accurately by GPS than horizontal positions. Reviewing the topic of GPS height determination, we will first consider the circumstance, that we have to estimate receiver clock corrections (or form differences between satellites), and its impact on GPS height estimates and look at the correlation of the height with troposphere and receiver clock parameters. Before discussing individual error sources, the classification of biases into two major groups will help to gain an overview of which type of errors are problematic for the height component. We then discuss in some details the major error sources, that degrade the height estimates, namely, tropospheric refraction, reference frame, geocenter and orbit errors, site displacements due to ocean and atmospheric loading, antenna phase center variations, and multipath.

Illustrative examples will be given and processing strategies will be recommended to overcome or reduce the impact of these biases.


GPS height determination tropospheric refraction antenna phase centers multipath 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baueršima, I.. NAVSTAR/Global Positioning System (GPS), II. Mitteilungen der Satelliten-Beobachtungsstation Zimmerwald, No. 10, Astronomical Institute, University of Berne, 1983.Google Scholar
  2. Böder, V., F. Menge, G. Seeber, G. Wübbena, and M. Schmitz. How to Deal With Station Dependent Errors - New Developments of the Absolute Calibration of PCV and Phase-Multipath With a Precise Robot. In Proceedings of the ION GPS-01, Salt Lake City, Utah, 2001.Google Scholar
  3. Beutler, G., I. Bauersfma, W. Gurtner, M. Rothacher, T. Schildknecht, and A. Geiger. Atmospheric Refraction and Other Important Biases in GPS Car-rier Phase Observations. In Monograph 12, School of Surveying, University of New South Wales, Australia., 1987.Google Scholar
  4. Brunner, F.K., and H. Hartinger. GPS Signal Diffraction Modelling: the stochastic SIGMA-D Model. J. Geod., 73, 259 - 267, 1999.CrossRefGoogle Scholar
  5. Jaldehag, R.T.K.. An Experimental and Theoretical Study of Antenna Related Error Sources. Technical Report 276, Chalmers University of Technology, Göteborg, Sweden, 1995.Google Scholar
  6. McCarthy, D. D. (ed.). IERS Conventions (1996). IERS Tech. Note 21, Obs. de Paris, Paris, 1996.Google Scholar
  7. Niell, A. E.. Global Mapping Functions for the Atmosphere Delay at Radio Wavelengths. J. Geophys. Res., 101(B2), 3227 - 3246, 1996.Google Scholar
  8. Rothacher, M., and G. Beutler. The Role of GPS in the Study of Global Change. Physics and Chemistry of the Earth, 23(9-10), 1029 - 1040, 1998.Google Scholar
  9. Rothacher, M., and L. Mervart. The Bernese GPS software version 4.0. Astron. Inst., Univ. of Berne, Berne, Switzerland, 1996.Google Scholar
  10. Rothacher, M., W. Gurtner, S. Schaer, R. Weber, W. Schlüter, and H. O. Hase. Azimuth-and Elevation-Dependent Phase Center Corrections for Geodetic GPS Antennas Estimated From GPS Calibration Campaigns. In International Association of Geodesy Symposia, Symposium No. 115: GPS Trends in Precise Terrestrial, Airborne, and Spaceborne Applications, edited by G. Beutler et al., Springer, Boulder, CO, USA, 1995.Google Scholar
  11. Rothacher, M., W. Gurtner, S. Schaer, R. Weber, and H. O. Hase. Azimuth-and Elevation-Dependent Phase Center Corrections for Geodetic GPS Antennas Estimated from GPS Calibration Campaigns. In IAG Symposium No. 115, edited by W. Torge, pp. 335 - 339, Springer-Verlag, 1996.Google Scholar
  12. Rothacher, M., T. A. Springer, S. Schaer, and G. Beutler. Processing strategies for regional GPS networks. In International Association of Geodesy Symposia, Adv. Positioning Ref. Frames, vol. 118, edited by F. Brunner, pp. 93 - 100, Springer-Verlag, New York, 1998.Google Scholar
  13. Saastamoinen, J.. Atmospheric Correction for the Troposphere and Stratosphere in Radio Ranging of Satellites. In The Use of Artificial Satellites for Geodesy, Geophysical Monograph Series, 1972.Google Scholar
  14. Santerre, R.. Impact of GPS Satellite Sky Distribution. Manuscr. Geod., 16, 28 - 53, 1991.Google Scholar
  15. Scherneck, H.-G., J.M. Johansson, and F.H. Webb. Ocean loading tides in GPS and rapid variations of the frame origin. In Geodesy 2000 - Challenges in the First Decade, vol. 121, edited by K.P. Schwarz, Springer Verlag Berlin Heidelberg, 2000.Google Scholar
  16. vanDam, T.M., and T.A. Herring. Detection of atmospheric pressure loading using very long baseline interferometry measurements. J. Geophys. Res., 99, 4505 - 4517, 1994.CrossRefGoogle Scholar
  17. Wieser, A., and F.K. Brunner. An Extended Weight model for GPS Phase Observations. Earth, Planets and Space, 52, 777 - 782, 2000.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • M. Rothacher
    • 1
  1. 1.Forschungseinrichtung SatellitengeodäsieTU MunichMunichGermany

Personalised recommendations