Advertisement

Steiner Tree and TSP

  • Vijay V. Vazirani

Abstract

In this chapter, we will present constant factor algorithms for two fundamental problems, metric Steiner tree and metric TSP. The reasons for considering the metric case of these problems are quite different. For Steiner tree, this is the core of the problem — the rest of the problem reduces to this case. For TSP, without this restriction, the problem admits no approximation factor, assuming PNP. The algorithms, and their analyses, are similar in spirit, which is the reason for presenting these problems together.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

  1. 57.
    R. Courant and H. Robbins. What Is Mathematics? Oxford University Press, New York, NY, 1941.zbMATHGoogle Scholar
  2. 140.
    F. K. Hwang, D. S. Richards, and P. Winter. The Steiner Tree Problem, volume 53 of Annals of Discrete Mathematics. North-Holland, Amsterdam, Netherlands, 1992.Google Scholar
  3. 244.
    P. Schreiber. On the history of the so-called Steiner Weber problem. Wiss. Z. Ernst-Moritz-Arndt-Univ. Greifswald, Math.-nat.wiss. Reihe, 35, 3, 1986.Google Scholar
  4. 46.
    E.-A. Choukhmane. Une heuristique pour le problème de l’arbre de Steiner. RAIRO Rech. Opér., 12: 207–212, 1978.MathSciNetCrossRefGoogle Scholar
  5. 143.
    A. Iwainsky, E. Canuto, O. Taraszow, and A. Villa. Network decomposition for the optimization of connection structures. Networks, 16: 205–235, 1986.MathSciNetCrossRefGoogle Scholar
  6. 184.
    L. Kou, G. Markowsky, and L. Berman. A fast algorithm for Steiner trees. Acta Informatica, 15: 141–145, 1981.MathSciNetCrossRefGoogle Scholar
  7. 229.
    J. Plesnik. A bound for the Steiner tree problem in graphs. Math. Slovaca, 31: 155–163, 1981.MathSciNetzbMATHGoogle Scholar
  8. 47.
    N. Christofides. Worst-case analysis of a new heuristic for the traveling salesman problem. Technical report, Graduate School of Industrial Administration, Carnegie-Mellon University, Pittsburgh, PA, 1976.Google Scholar
  9. 240.
    S.K. Sahni and T.F. Gonzalez. P-complete approximation problems. Journal of the ACM, 23: 555–565, 1976.CrossRefGoogle Scholar
  10. 42.
    M. Charikar, J. Kleinberg, R. Kumar, S. Rajagopalan, A. Sahai, and A. Tomkins Minimizing wirelength in zero and bounded skew clock trees. In Proc. 10th ACM-SIAM Annual Symposium on Discrete Algorithms, pages 177–184, 1999.Google Scholar
  11. 272.
    A.Z. Zelikovsky and I. I. Mândoiu. Practical approximation algorithms for zero-and bounded-skew trees. In Proc. 12th ACM-SIAM Annual Symposium on Discrete Algorithms, pages 407–416, 2001.Google Scholar
  12. 67.
    D.Z. Du and F.K. Hwang. Gilbert-Pollack conjecture on Steiner ratio is true. Algorithmica, 7: 121–135, 1992.MathSciNetCrossRefGoogle Scholar
  13. 106.
    E.N. Gilbert and H.O. Pollak. Steiner minimal trees. SIAM Journal on Applied Mathematics, 16: 1–29, 1968.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Vijay V. Vazirani
    • 1
  1. 1.Georgia Institute of TechnologyCollege of ComputingAtlantaUSA

Personalised recommendations