Advertisement

Introduction to LP-Duality

  • Vijay V. Vazirani

Abstract

A large fraction of the theory of approximation algorithms, as we know it today, is built around linear programming (LP). In Section 12.1 we will review some key concepts from this theory. In Section 12.2 we will show how the LP-duality theorem gives rise to min-max relations which have far-reaching algorithmic significance. Finally, in Section 12.3 we introduce the two fundamental algorithm design techniques of rounding and the primal-dual schema, as well as the method of dual fitting, which yield all the algorithms of Part II of this book.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

  1. 51.
    V. Chvâtal. Linear Programming. W.H. Freeman and Co., New York, NY, 1983. (Cited on p. 107)Google Scholar
  2. 61.
    G.B. Dantzig. Linear Programming and Extensions. Reprint of the 1968 corrected edition. Princeton University Press, Princeton, NJ, 1998. (Cited on p. 107)Google Scholar
  3. 167.
    H. Karloff. Linear Programming. Birkhäuser, Boston, MA, 1991. (Cited on p. 107)CrossRefGoogle Scholar
  4. 220.
    G. Nemhauser and L. Wolsey. Integer and Combinatorial Optimization. John Wiley & Sons, New York, NY, 1988. (Cited on p. 107)Google Scholar
  5. 245.
    A. Schrijver. Theory of Linear and Integer Programming. John Wiley & Sons, New York, NY, 1986. (Cited on p. 107)Google Scholar
  6. 2.
    R.K. Ahuja, T.L. Magnanti, and J.B. Orlin. Network Flows. Prentice Hall, New Jersey, 1993. (Cited on p. 107)Google Scholar
  7. 54.
    W.J. Cook, W.H. Cunningham, W.R. Pulleyblank, and A. Schrijver. Combinatorial Optimization. John Wiley & Sons, New York, NY, 1998. (Cited on p. 107)Google Scholar
  8. 123.
    M. Grötschel, L. Lov sz, and A. Schrijver. Geometric Algorithms and Combinatorial Optimization. Second edition. Springer-Verlag, Berlin, 1993. ( Cited on p. 107 )CrossRefGoogle Scholar
  9. 201.
    L. Lovâsz. Combinatorial Problems and Exercises. Second edition. North-Holland, Amsterdam—New York, 1993. (Cited on pp. 107, 339, 341 )Google Scholar
  10. 202.
    L. Lovâsz and M.D. Plummer. Matching Theory. North-Holland, Amsterdam—New York, 1986. (Cited on pp. 8, 11, 107 )Google Scholar
  11. 225.
    C.H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms and Complexity. Prentice-Hall, Englewood Cliffs, NJ, 1982. (Cited on pp. 11, 107 )Google Scholar
  12. 202.
    L. Lovâsz and M.D. Plummer. Matching Theory. North-Holland, Amsterdam—New York, 1986. (Cited on pp. 8, 11, 107 )Google Scholar
  13. 122.
    M. Grötschel, L. Lovész, and A. Schrijver. The ellipsoid method and its consequences in combinatorial optimization. Combinatorica,1:169–197, 1981. (Cited on p. 107)MathSciNetCrossRefGoogle Scholar
  14. 123.
    M. Grötschel, L. Lov sz, and A. Schrijver. Geometric Algorithms and Combinatorial Optimization. Second edition. Springer-Verlag, Berlin, 1993. ( Cited on p. 107 )CrossRefGoogle Scholar
  15. 245.
    A. Schrijver. Theory of Linear and Integer Programming. John Wiley & Sons, New York, NY, 1986. (Cited on p. 107)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Vijay V. Vazirani
    • 1
  1. 1.Georgia Institute of TechnologyCollege of ComputingAtlantaUSA

Personalised recommendations