Genetic Algorithms in Time-Dependent Environments

  • C. Ronnewinkel
  • C. O. Wilke
  • T. Martinetz
Part of the Natural Computing Series book series (NCS)

Abstract

The influence of time-dependent fitnesses on the infinite population dynamics of simple genetic algorithms (GAs) without crossover is analyzed. Based on general arguments, a schematic phase diagram is constructed that allows one to characterize the asymptotic states in dependence on the mutation rate and the time scale of changes. Furthermore, the notion of regular changes is raised for which the population can be shown to converge towards a generalized quasispecies. Based on this, error thresholds and an optimal mutation rate are approximately calculated for a generational GA with a moving needle-inthe-haystack landscape. The phase diagram thus found is fully consistent with our general considerations.

Keywords

Time-dependent fitness landscape quasispecies error threshold optimal mutation rate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Baake and W. Gabriel. Biological evolution through mutation, selection, and drift: an introductory review. Ann. Rev. Comp. Phys., 7:203–264, 2000.Google Scholar
  2. 2.
    T. Bäck, U. Hammel and H.-P. Schwefel. Evolutionary computation: comments on the history and current state. IEEE Transactions on Evolutionary Computation, 1(1):3—17, 1997.CrossRefGoogle Scholar
  3. 3.
    T. Bäck, D. B. Fogel and Z. Michalewicz, editors. Handbook of Evolutionary Computation. IOP Publishing, Bristol, 1997.MATHGoogle Scholar
  4. 4.
    J. Branke. Evolutionary algorithms for dynamic optimization problems, a survey. Technical Report 387, AIFB University Karlsruhe, 1999.Google Scholar
  5. 5.
    J. Branke, M. Cutaia and H. Dold. Reducing genetic drift in steady state evolutionary algorithms. In W. Banzhaf et al., editors, Proceedings of GECCO1999, pages 68–74. Morgan Kaufmann, San Francisco, 1999.Google Scholar
  6. 6.
    K. DeJong and J. Sarma. Generation gaps revisited. In L. D. Whitley, editor, Foundations of Genetic Algorithms2, pages 19–28. Morgan Kaufmann, San Francisco, 1993.Google Scholar
  7. 7.
    M. Eigen. Self-organization of matter and the evolution of biological macromolecules. Naturwissenschaften, 58:465–523, 1971.CrossRefGoogle Scholar
  8. 8.
    M. Eigen and P. Schuster. The Hypercycle — a Principle of Natural Self-Organization. Springer-Verlag, Berlin Heidelberg New York, 1979.Google Scholar
  9. 9.
    M. Eigen, J. McCaskill and P. Schuster. The molecular quasispecies. Adv. Chem. Phys., 75:149–263, 1989.CrossRefGoogle Scholar
  10. 10.
    M. Nilsson and N. Snoad. Error thresholds on dynamic fitness-landscapes. Working Paper 99–04–030, Santa Fe Institute, 1999.Google Scholar
  11. 11.
    A. Rogers and A. Prügel-Bennett. Modeling the dynamics of a steady state genetic algorithm. In W. Banzhaf and C. Reeves, editors, Foundations of Genetic Algorithms5, pages 57–68. Morgan Kaufmann, San Francisco, 1998.Google Scholar
  12. 12.
    J. E. Rowe. Finding attractors for periodic fitness functions. In W. Banzhaf et al., editors, Proceedings of the Genetic and Evolutionary Computation Conference, GECCO1999, pages 557–563. Morgan Kaufmann, San Francisco, 1999.Google Scholar
  13. 13.
    J. E. Rowe. The dynamical systems model of the simple genetic algorithm. This volume, pages 31–57.Google Scholar
  14. 14.
    J. E. Rowe. Cyclic attractors and quasispecies adaptability. This volume, pages 251— 259.Google Scholar
  15. 15.
    L. M. Schmitt, C. L. Nehaniv and R. H. Fujii. Linear analysis of genetic algorithms. Theoretical Computer Science, 200(1–2):101–134, 1998.MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    E. van Nimwegen, J. P. Crutchfield and M. Mitchell. Statistical dynamics of the Royal-Road genetic algorithms. Theoretical Computer Science, 229(1–2):41–102, 1999.MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    M. D. Vose. The Simple Genetic Algorithm — Foundations and Theory. MIT Press, Cambridge, MA, 1999.MATHGoogle Scholar
  18. 18.
    C. O. Wilke, C. Ronnewinkel and T. Martinetz. Molecular evolution in timedependent environments. In D. Floreano, J.-D. Nicoud and F. Mondada, editors, Proceedings of the European Conference on Artificial Life1999, pages 417–421. Springer-Verlag, Berlin Heidelberg New York, 1999.Google Scholar
  19. 19.
    C. O. Wilke and C. Ronnewinkel. Dynamic fitness landscapes in the quasispecies model. Physics Reports, Elsevier, in press.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • C. Ronnewinkel
    • 1
    • 2
  • C. O. Wilke
    • 1
  • T. Martinetz
    • 1
  1. 1.Institut für Neuro- und BioinformatikMedizinische Universität LübeckLübeckGermany
  2. 2.Institut für NeuroinformatikRuhr-Universität BochumBochumGermany

Personalised recommendations