Advertisement

Real-Time Solutions of Bang-Bang and Singular Optimal Control Problems

  • Christof Büskens
  • Hans Josef Pesch
  • Susanne Winderl
Chapter

Abstract

In many applications of optimal control some or all of the control variables appear linearly in the objective function and the dynamical equations. Therefore, the optimal solutions may exhibit both bang-bang and singular subarcs. Unfortunately, the theory for linear problems of that type is not as well developed as for regular problems, in particular with respect to second order sufficiency conditions. This results in serious problems in developing real-time capable methods to approximate optimal solutions in the presence of data perturbations. In this paper, two discretization methods are presented by which linear optimal control problems can be transcribed into nonlinear programming problems. Based on a stability and sensitivity analysis of the resulting nonlinear programming problems it is possible to compute sensitivity differentials for the discretized problems, by means of which near-optimal solutions can now be computed in real-time for linear problems, too. The performance of one of these methods is demonstrated for the optimal control of a batch reactor.

Keywords

Control Problem Optimal Control Problem Nonlinear Programming Problem Singular Control Switching Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Büskens: Direkte Optimierungsmethoden zur numerischen Berechnung optimaler Steuerungen. Diploma thesis, Institut für Numerische Mathematik, Universität Münster, Münster, Germany, (1993)Google Scholar
  2. 2.
    C. Büskens: Optimierungsmethoden und Sensitivitätsanalyse für optimale Steuer-prozesse mit Steuer- und Zustands- Beschrankungen. Dissertation, Institut für Numerische Mathematik, Universität Münster, Germany, (1998)Google Scholar
  3. 3.
    C. Büskens: Real-Time Solutions for Perturbed Optimal Control Problems by a Mixed Open- and Closed-Loop Strategy. This volume.Google Scholar
  4. 4.
    C. Büskens and H. Maurer: Sensitivity Analysis and Real-Time Optimization of Nonlin-ear Programming Problems. This volumeGoogle Scholar
  5. 5.
    C. Büskens and H. Maurer: Sensitivity Analysis and Real-Time Control of Optimal Control Problems Using Nonlinear Programming Methods. This volume.Google Scholar
  6. 6.
    G. Fraser-Andrews: Finding Candidate Singular Optimal Controls: A State of the Art Survey. JOTA 60 (2) (1989) 173–190MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    G. Fraser-Andrews: Numerical Methods for Singular Optimal Control. JOTA 61 (3) (1989)377–401MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    H. Maurer and D. Augustin, Sensitivity Analysis and Real-Time Control of Parametric Optimal Control Problems Using Boundary Value Methods. This volumeGoogle Scholar
  9. 9.
    A. A. Milyutin, N. P. Osmolovskii: Calculus of Variations and Optimal Control. Translations of mathematical Monographs 180, American Mathematical Society, Providence (1998)Google Scholar
  10. 10.
    H. G. Schwarz: Numerische Mathematik. B.G. Teubner Stuttgart (1988)zbMATHGoogle Scholar
  11. 11.
    V. S. Vassiliadis, R. W. H. Sargent, C. C. Pantelides: Solution of a Class of Multistage Dynamic Optimization Problems. 2. Problems with Path Constraints. Ind. Eng. Chem. Res. 33 (9) (1994) 2123–2133CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Christof Büskens
    • 1
  • Hans Josef Pesch
    • 1
  • Susanne Winderl
    • 1
  1. 1.Lehrstuhl für IngenieurmathematikUniversität BayreuthGermany

Personalised recommendations