Stochastic Optimization for Operating Chemical Processes under Uncertainty

  • René Henrion
  • Pu Li
  • Andris Möller
  • Marc C. Steinbach
  • Moritz Wendt
  • Günter Wozny
Chapter

Abstract

Mathematical optimization techniques are on their way to becoming a standard tool in chemical process engineering. While such approaches are usually based on deterministic models, uncertainties such as external disturbances play a significant role in many real-life applications. The present article gives an introduction to practical issues of process operation and to basic mathematical concepts required for the explicit treatment of uncertainties by stochastic optimization.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Bauer. Maß- und Integrationstheorie. (Measure and integration theory), de Gruyter Lehrbuch. De Gruyter, Berlin, 2nd, revised edition, 1992. (In German.).MATHGoogle Scholar
  2. 2.
    H. Bauer. Probability Theory, de Gruyter Studies in Mathematics 23. de Gruyter, Berlin, 1996. (Translated from the German by Robert B. Burckel.).MATHCrossRefGoogle Scholar
  3. 3.
    L. T. Biegler, I. E. Grossmann, and A. W. Westerberg. Systematic Methods of Chemical Process Design. Prentice-Hall, Englewood Cliffs, NJ, 1997.Google Scholar
  4. 4.
    J. R. Birge. Stochastic programming computations and applications. INFORMS J. Corn-put., 9(2):111–133, 1997.MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    J. R. Birge and F. Louveaux. Introduction to Stochastic Programming. Springer-Verlag, New York, 1997.MATHGoogle Scholar
  6. 6.
    J. Bukszâr and A. Prékopa. Probability bounds with cherry trees. Math. Oper. Res. Google Scholar
  7. 7.
    A. V. Fiacco and G. P. McCormick. Nonlinear Programming: Sequential Unconstrained Minimization Techniques. Wiley, New York, 1968. Reprinted by SI AM Publications, 1990.MATHGoogle Scholar
  8. 8.
    P. E. Gill, W. Murray, and M. H. Wright. Practical Optimization. Addison Wesley, 1981.MATHGoogle Scholar
  9. 9.
    J. Gmehling, U. Onken, and W. Arlt. VLE Data Collection. DECHEMA, 1997.Google Scholar
  10. 10.
    I. E. Grossmann and A. W. Westerberg. Research challenges in process systems engineering. AI. Che. J., 46:1700–1703, 2000.Google Scholar
  11. 11.
    R. Henrion. A note on the connectedness of chance constraints. Preprint 21, Stochastic Programming Eprint Series (SPEPS), 2000. Submitted to J. Optim. Theory Appl.Google Scholar
  12. 12.
    D. Hunter. Bounds for the probability of a union. J. Appl. Probab., 13:597–603, 1976.MATHCrossRefGoogle Scholar
  13. 13.
    M. G. Ierapetritou, J. Acevedo, and E. N. Pistikopoulos. An optimization approach for process engineering problems under uncertainty. Comput. Chem. Eng., 20:703–709, 1996.CrossRefGoogle Scholar
  14. 14.
    P. Kail and S. W. Wallace. Stochastic Programming. Wiley, New York, 1994.Google Scholar
  15. 15.
    P. Li, H. A. Garcia, G. Wozny, and E. Reuter. Optimization of a semibatch distillation process with model validation on the industrial site. Ind. Eng. Chem. Res., 37:1341–1350, 1998.CrossRefGoogle Scholar
  16. 16.
    M. Loeve. Probability Theory. Van Nostrand-Reinhold, Princeton, NJ, 1963.MATHGoogle Scholar
  17. 17.
    J. Nocedal and S. J. Wright. Numerical Optimization. Springer-Verlag, New York, 1999.MATHCrossRefGoogle Scholar
  18. 18.
    A. Prékopa. Stochastic Programming. Kluwer Academic Publishers, Dordrecht, The Netherlands, 1995.Google Scholar
  19. 19.
    R. C. Reid, J. M. Prausnitz, and B. E. Poling. The Properties of Gases and Liquids. McGraw-Hill, New York, 1987.Google Scholar
  20. 20.
    R. T. Rockafellar and R. J.-B. Wets. Generalized linear-quadratic problems of deterministic and stochastic optimal control in discrete time. SI AM J. Control Optim., 28(4): 810–822, 1990.MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    A. Ruszczynski. Decomposition methods in stochastic programming. Math. Programming, 79(l-3):333–353, 1997.MathSciNetMATHGoogle Scholar
  22. 22.
    W. D. Seider, J. D. Seader, and D. R. Lewin. Process Design Principles: Synthesis, Analysis and Evaluation. Wiley, New York, 1998.Google Scholar
  23. 23.
    M. C. Steinbach. Fast Recursive SQP Methods for Large-Scale Optimal Control Problems. Ph. D. dissertation, University of Heidelberg, Germany, 1995.Google Scholar
  24. 24.
    M. C. Steinbach. Recursive direct algorithms for multistage stochastic programs in financial engineering. In P. Kail and H.-J. Liithi, editors, Operations Research Proceedings 1998, 241–250, New York, 1999. Springer-Verlag.CrossRefGoogle Scholar
  25. 25.
    M. C. Steinbach. Hierarchical sparsity in multistage convex stochastic programs. In S. P. Uryasev and P. M. Pardalos, editors, Stochastic Optimization: Algorithms and Applications, 363–388, Kluwer Academic Publishers, 2001. Dordrecht, The Netherlands.Google Scholar
  26. 26.
    M. C. Steinbach. Tree-sparse convex programs. Technical Report ZR-01–08, ZIB, 2001. Submitted for publication.Google Scholar
  27. 27.
    T. Szântai and A. Habib. On the k-out-of-r-from-n: F system with unequal element probabilities. In F. Gianessi et al., editor, New Trends in Mathematical Programming, 289–303. Kluwer Academic Publishers, Dordrecht, The Netherlands, 1998.Google Scholar
  28. 28.
    W. B. Whiting. Effects of uncertainties in thermodynamic data and models on process calculations. J. Chem. Eng. Data, 41:935–941, 1996.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • René Henrion
    • 1
  • Pu Li
    • 2
  • Andris Möller
    • 1
  • Marc C. Steinbach
    • 3
  • Moritz Wendt
    • 2
  • Günter Wozny
    • 2
  1. 1.Weierstraß-Institut für Angewandte Analysis und Stochastik (WIAS)BerlinGermany
  2. 2.Institut für Prozess- und AnlagentechnikTechnische Universität BerlinGermany
  3. 3.Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB)Germany

Personalised recommendations