Relevance of Cathodoluminescence for the Interpretation of U-Pb Zircon Ages, with an Example of an Application to a Study of Zircons from the Saxonian Granulite Complex, Germany

  • Ulf Kempe
  • Torsten Gruner
  • Lutz Nasdala
  • Dieter Wolf


In the last few years, an increasing number of papers dealing with applications of cathodoluminescence (CL) imaging — using both optical microscopes (0M-CL) and systems operating with secondary electron microscopes (SEM) or electron microprobes (SEM-CL) — to investigate the internal structures of zircon have been published. CL has been demonstrated to be a powerful tool for investigating zircons. This method yields high-resolution images of internal structures that often cannot be detected with other techniques (e.g., HF etching, Normarski interference). In most previous publications, CL images were interpreted assuming that CL is exclusively generated within the micro-areas that are irradiated with the electron beam (e.g., Hanchar and Miller 1993; Vavra et al. 1996). We want to demonstrate here that this assumption may in several cases lead to some misinterpretation of the internal structure of zircon.


Back Scatter Electron Mafic Granulite Rare Earth Element Secondary Electron Microscope Metamict Zircon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andsdell KM, Kyser TK (1993) Textural and chemical changes undergone by zircon during the Pb-evaporation technique. American Mineralogist 78: 36–41Google Scholar
  2. Aoki K (1994) Fluorescence spectra of zircons from Italian alpine plutonic rocks. Bulletin of the Yamagata University (Natural Science) 13 (3): 199–204Google Scholar
  3. Barabanov VF, Goncharov GN, Zorina ML, Sakharov AN, Sorokin ND, Sukharzhevskij SM (1990) Modern physical methods in geochemistry. Leningrad State Universtity, Leningrad (in Russian)Google Scholar
  4. Baumann N, Pilot J, Werner CD, Todt W (1996) Datings on minerals as contributions to clearing up the geological history from the Saxonian Granulite Complex. Journal of Conference Abstracts 1(1): 50 (abs.)Google Scholar
  5. BenisekA, Finger F (1993) Factors controlling the development of prism faces in granite zircons: a microprobe study. Contributions to Mineralogy and Petrology 114: 441–451CrossRefGoogle Scholar
  6. Bingen B, Demaiffe D, Hertogen J (1996) Redistribution of rare earth elements, thorium, and uranium over accessory minerals in the course of amphibolite to granulite facies metamorphism: The role of apatite and monazite in orthogneisses from southwestern Norway. Geochimica et Cosmochimica Acta 60 (8): 1341–1354CrossRefGoogle Scholar
  7. Black LP (1987) Recent Pb loss in zircon: a natural or laboratory induced phenomenon ? Chemical Geology (Isotope Geoscience Section) 65: 25–33CrossRefGoogle Scholar
  8. Black LP, Williams IS, Compston W (1986) Four zircon ages from one rock: the history of a 3930 Ma-old granulite from Mount Sones, Enderby Land, Antarctica. Contributions to Mineralogy and Petrology 94: 427–437Google Scholar
  9. Carpéna J, Gagnol I, Mailhé D, Pupin JP (1987) L’ uranium marqueur de la croissance cristalline: mise en évidence par les traces de fission dans les zircons gemmes d’ Espaly ( Haute-Loire, France) Bull. Minéral 110: 459–463Google Scholar
  10. Cesbron F, Ohnenstetter D, Blanc Ph, Rouer 0, Sichere MC (1993) Incorporation de terres rares dans des zircons de synthése: étude par cathodoluminescence. C.R. Acad. Sci. Paris 316 (II): 1231–1238Google Scholar
  11. Chatagnon B, Galland D, Gloux P, Méary A (1982) L’ion paramagnétique Tm2+dans la fluorit. Mineralium Deposita 17: 411–422CrossRefGoogle Scholar
  12. Chatagnon B,MearyA (1982) Nouvelle méthode d’étude des terres rares dans les gisements fluorés basée sur des corrélations RPE–analyse par activation neutronique. Bulletin du BRGM, (2), sec. II, No 4, 359–364Google Scholar
  13. Chemale LT, Steele IM, Vasconcellos MAZ (1996) Zircon zonation: an experimental study using electron probe microanalysis, cathodoluminescence spectroscopy and synchrotron X-ray fluorescence. In: Pagel, M. (ed.) International conference on cathodoluminescence and related techniques in geosciences and geomaterials. Nancy, 39–40 (abs.)Google Scholar
  14. Chernyshev IV, Zhuravlev DZ (1987) Sr-Nd isotope systematics and the age of granulites in the Saxonian massif (exemplified in the Hartmannsdorf region). In: Gerstenberger H (ed.) Contributions to the geology of the Saxonian Granulite Massif (Sächsisches Granulitgebirge). ZFL-Mitteilungen 133: 63–72Google Scholar
  15. Compston W, Kinny PD, Williams IS, Foster JJ (1986) The age and Pb-loss behavior of zircons from the Isua supracrustal belt as determined by ion microprobe. Earth and Planetary Science Letters 80: 71–81CrossRefGoogle Scholar
  16. Compston W, Williams IS, Meyer C (1984) U-Pb geochronology of zircons from lunar breccia 73217 using a Sensitive High Mass-Resolution Ion Microprobe. Journal of Geophysical Research 89 (suppl.): B525 - B534CrossRefGoogle Scholar
  17. Faure G (1986) Principles of isotope geology. Wiley & Sons, New YorkGoogle Scholar
  18. Feofilov PP (1956) Absorption and luminescence of divalent REE in synthetic and natural fluorite. Optika i spektroskopiya 1 (8): 992–1001 (in Russian)Google Scholar
  19. Fielding PE (1970) The distribution of uranium, rare earth, and color centers in a crystal of natural zircon. American Mineralogist 55: 428–440Google Scholar
  20. Franke W (1993) The Saxonian Granulites: a metamorphic core complex ? Geologische Rundschau 82: 505–515CrossRefGoogle Scholar
  21. Gebauer D (1990) Isotopic systems–geochronology of eclogites. In: Carswell DA (ed.) Eclogite facies rocks. Blackie, Glasgow and London: 141–159Google Scholar
  22. Gebauer D (1996) A P-T-t path for an (ultra?-) high-pressure ultramafic/mafic rock-association and its felsic country-rocks based on SHRIMP-dating of magmatic and metamorphic zircon domains. Example: Alpe Arami (Central Swiss Alps). In: Bsau A, Hart S (eds.) Earth processes: reading the isotopic code. Geophysical Monograph 95. American Geophysical Union, Washington, 307–329CrossRefGoogle Scholar
  23. Gebauer D, Grünenfelder M (1976) U-Pb zircon and Rb-Sr whole-rock dating of low-grade metasediments. Example: Montagne Noire (Southern France). Contributions to Mineralogy and Petrology 59: 13–32Google Scholar
  24. Goldstein JI, Newbury P, Echlin P, Joy DC, Fiori C, Lifshin E (1981) Scanning electron microscopy and X-ray microanalysis. Plenum Press, New YorkCrossRefGoogle Scholar
  25. Gorokhov IM, Anderson EB, Melnikov NN, Mitrofanov FP, Kutyavin EP, Bizunok MB, Rocheva ON (1987) Geochronology of metamorphic rocks of the Sächsische Granulitgebirge (GDR). In: Gerstenberger H (ed.) Contributions to the geology of the Saxonian Granulite Massif (Sächsisches Granulitgebirge). ZFL-Mitteilungen 133: 43–62Google Scholar
  26. Götze J, Habermann D, Kempe U, Nasdala L, Neuser RD, Richter DK (1997) High resolution cathodoluminescence combined with U-Pb geochronology (SHRIMP) of detrital zircons: A case study of the Cretaceous Weferlingen quartz sand (Germany). Gaea heidelbergensis 3, 18th JAS Regional European Meeting of Sedimentology, Heidelberg: 145–146 (abs.)Google Scholar
  27. Gracheva TV, Bibikova EV, Akhmanova MV (1981) Ascertaining of geochronologic role of metamictization degree of zircon using IR spectroscopy. Geochimiya (2): 274–291 (in Russian)Google Scholar
  28. Gruner T, Kempe U, Wolf D (1996) Interpretation von integralen SEM-CL Abbildungen granuli-tischer Zirkone. Berichte der DMG. European Journal of Mineralogy 8(Beiheftl): 83 (abs.)Google Scholar
  29. Halden NM, Hawthorne FC (1993) The fractal geometry of oscillatory zoning in crystals: Application to zircon. American Mineralogist 78: 1113–1116Google Scholar
  30. Hall MG, Lloyd GE (1981) The SEM examination of geological samples with a semiconductor back-scattered electron detector. American Mineralogist 66: 362–368Google Scholar
  31. Hanchar JM, Miller CF (1993) Zircon zonation patterns as revealed by cathodoluminescence and back-scattered electron images: Implications for interpretation of complex crustal histories. Chemical Geology 110: 1–13Google Scholar
  32. Hanchar JM, Rudnick RL (1995) Revealing hidden stuctures: The application of cathodoluminescence and back-scattered electron imaging to dating zircons from lower crustal xenoliths. Lithos 36: 289–303Google Scholar
  33. Hoffman JF, Long JVP (1984) Unusual sector zoning in Lewisian zircons. Mineralogical Magazine 48: 513–517CrossRefGoogle Scholar
  34. Hoppe G (1966) Zirkone aus Granuliten. Ber. deutsch. Ges. geol. Wiss. B 11 (1): 47–81Google Scholar
  35. Kempe U, Dandar S, Lehmann J, Goldstein S, Wolf D (1996) Mineralogische Untersuchungen an Nb-Zr-REE-Mineralisationen von Khaldzan Buregte (Mongolischer Altai): Mehrphasige Vererzungen im Dach hybrider Karbonatit-Granit-Intrusionen. Berichte der DMG. European Journal of Mineralogy 8 (Beiheft 1 ): 136 (abs.)Google Scholar
  36. Kempe U, Gruner T, Renno AD, Wolf D (1997) Hf-rich zircons in rare-metal bearing granites: magmatic or metasomatic origin ? In: Papunen H (ed) Research and exploration–where do they meet ? Balkema, Rotterdam, 643–646Google Scholar
  37. Kempe U, Sorokin ND (1988) Replacement processes in wolframite. Doklady Akademii nauk SSSR 303 (1): 203–206 (in Russian)Google Scholar
  38. Koschek G (1993) Origin and significance of the SEM cathodoluminescence from zircon. Journal of Microscopy 171 (3): 223–232CrossRefGoogle Scholar
  39. Kosler J, Svojtka M, Jellnek E (1996) U-Pb geochronology of granulite facies rocks: implications from BSE study of zircons. Journal of Conference Abstracts 1(1): 326 (abs.)Google Scholar
  40. Kotov, NV, Maslennikov AV, Levchenkov OA, Bogomolov ES, Yakovleva SZ (1990) Behavior of metamict zircons under high temperature and high pressure: significance for geochronology. Geochimiya (4): 619–622Google Scholar
  41. Kramm U, Chernyshev IV, Grauert B, Kononova VA, Bröcker W (1993) Zircon typology and U-Pb systematics: a case study of zircons from nepheline syenite of the Il’meny Mountains, Ural. Petrology 1 (5): 536–549Google Scholar
  42. Krasnobaev AA, Votyakov SL, Krokhalev VYa (1988) Spectroscopy of zircons (properties and geological application). Nauka, Moscow (in Russian)Google Scholar
  43. Kroner U (1995) Postkollisionale Extension am Nordrand der Böhmischen Masse–Die Exhumierung des Sächsischen Granulitgebirges. Freiberger Forschungshefte C457, 1–114Google Scholar
  44. Kröner A, Jaeckel P, Reischmann T, Kroner U (1994) Further evidence for an early Carboniferous (approx. 340 Ma) age of high-grade metamorphism in the Saxonian Granulite Complex (in prep.)Google Scholar
  45. McLaren AC, Fitz Gerald JD, Williams IS (1994) The microstructure of zircon and its influence on the age determination from Pb/U isotopic ratios measured by ion microprobe. Geochimica et Cosmochimica Acta 58 (2): 993–1005CrossRefGoogle Scholar
  46. Lee JKW (1993) Problems and progress in the elucidation of U and Pb transport mechanisms in zircon. In: Boland JN, Fitz Gerald JD (eds) Defects and processes in the solid state geoscience applications. Elsevier, Amsterdam, Oxford, New York, 423–446Google Scholar
  47. Lork A, Koschek G (1991) Einsatz der KL-Technik bei der Beurteilung isotopengeochemisch bestimmter Alter von Zirkonen. Beiträge zur Elektronenmikroskopischen Direktabbildung von Oberflächen 24 (1): 147–166Google Scholar
  48. Loth G, Höll R (1996) Cathodoluminescence investigation of the evolution of zircon crystal shapes applied to supplement geochemical studies. Journal of Conference Abstracts 1(1): 379 (abs.)Google Scholar
  49. Marfunin AS (1979) Spectroscopy, luminescence and radiation centers in minerals. Springer-Verlag, Berlin, Heidelberg, New YorkGoogle Scholar
  50. Marshall DJ (1988) Cathodoluminescence of geological materials. Unwin Hyman, Boston Mezger K (1996) Metamorphism and geochronology. Berichte der DMG, European Journal of Mineralogy 8(Beiheft 1 ): 189 (abs.)Google Scholar
  51. Morozov M, Trinkler M, Plötze M, Kempe U (1996) Spectroscopic studies on fluorites from Li-F and alkaline granitic systems in Central Kazakhstan. In: Shatov V et al. (eds) Granite-related ore deposits of Central Kazakhstan and adjacent areas. Glagol, St. Petersburg, 359–369Google Scholar
  52. Murakami T, Chakoumakos BC, Ewing RC, Lumpkin GR, Weber WJ (1991) Alpha-decay event damage in zircon. American Mineralogist 76: 1510–1532Google Scholar
  53. Nasdala L, Gruner T, Nemchin AA, Pidgeon RT, Tichomirowa M (1996a) New SHRIMP measurements on zircons from Saxonian magmatic and metamorphic rocks.–In: Freiberger Isotopenkolloquium 1996. Proceedings. TU Bergakademie Freiberg, Freiberg, 205–214Google Scholar
  54. Nasdala L, Irmer G, Wolf D (1995) The degree of metamictization in zircon: a Raman spectroscopic study. European Journal of Mineralogy 7: 471–478Google Scholar
  55. Nasdala L., Pitgeon RT, Wolf D. (1996b) Heterogeneous metamictization of zircon on a microscale. Geochimica et Cosmochimica Acta 60 (6): 1091–1097CrossRefGoogle Scholar
  56. Nasdala L., Pidgeon RT, Wolf D, Irmer G (1997) Metamictization and U-Pb isotopic discordance in single zircons: a combined Raman microprobe and SHRIMP ion probe study. Mineralogy and Petrology (in press)Google Scholar
  57. Ohnenstetter D, Cesbron F, Remond G, Caruba R, Claude JM (1991) Emissions de cathodoluminescence de deux populations de zircons naturels: tentative d’interprétation. C.R. Acad. Sci. Paris 313 (II), 641–647Google Scholar
  58. Pan Y (1997) Zircon-and monazite-forming metamorphic reactions at Manitouwadge, Ontario. Canadian Mineralogist 35: 105–118Google Scholar
  59. Peterman ZE, Zartman RE, PK Sims (1986) A protracted Archean history in the Watersmeet gneiss dome, Northern Michigan. US Geological Survey Bulletin 1622: 51–64Google Scholar
  60. Phillips MR, Kalceff MAS, Moon AR (1996) Cathodoluminescence spectroscopy of natural zircon. In: Pagel, M. (ed.) International conference on cathodoluminescence and related techniques in geosciences and geomaterials. Nancy, 115–116 (abs.)Google Scholar
  61. Pidgeon RT (1992) Recrystallisation of oscillatory zircon: some geochronological and petrological implications. Contributions to Mineralogy and Petrology 110: 463–472CrossRefGoogle Scholar
  62. Pidgeon RT, O’Neil JR, Silver LT (1966) Uranium and lead isotopic stability in a metamict zircon under experimental hydrothermal conditions. Science 154: 1538–1540CrossRefGoogle Scholar
  63. Pidgeon RT, Furfaro D, Kennedy AK, Nemchin AA, van Bronswijk W (1994) Calibration of zircon standards for the Curtin SHRIMP II. 8th Int Conf Geochronol Cosmochronol Isotope Geol, Berkeley (US Geol Sury Circ 1107 ): 251 (abs.)Google Scholar
  64. Pilot J, Werner CD, Haubrich F (1997) 330 and 1600 Ma old zircons in drilled gabbros from MARK area, Mid-Atlantic Ridge (in prep.)Google Scholar
  65. Pointer CM, Ashworth JR, Ixer RA (1988) The zircon-thorite mineral group in metasomatized granite, Ririwai, Nigeria. 2. Zoning, alteration and exsolution in zircon. Mineralogy and Petrology 39: 21–37Google Scholar
  66. Poller U, Liebetrau V, Todt W (1996) Cathodoluminescence and conventional U-Pb single zircon dating on the same grain applied to S-type granitoids. Journal of Conference Abstracts 1(1): 478 (abs.)Google Scholar
  67. Pupin JP (1980) Zircon and granite Petrology. Contributions to Mineralogy and Petrology 73: 207–220CrossRefGoogle Scholar
  68. Pupin JP (1992) Les zircons des granites oceaniques et continentaux: couplage typologiegeochimie des elements en traces. Bull. Soc. geol. France 163 (4): 495–507Google Scholar
  69. von Quadt A (1993) The Saxonian Granulite Massif: new aspects from geochronological studies. Geologische Rundschau 82: 516–530CrossRefGoogle Scholar
  70. Remond G, Cesbron F, Chapoulie R, Ohnenstetter D, Roques-Carmes C, Schvoerer M (1992) Cathodoluminescence applied to the microcharacterization of mineral materials: a present status in experimentation and interpretation. Scanning Microscopy International 6 (1): 23–68Google Scholar
  71. Roberts MP, Finger F (1996) Significance of zircon ages for Southern Bohemian Granulites; evidence for late zircon growth as a consequence of long-term melt residence during retrograde metamorphic evolution. Journal of Conference Abstracts 1(1): 513 (abs.)Google Scholar
  72. Roger F, Calassou S, Lancelot J, Malavieille J, Mattauer M, Zhinqin X, Ziwen H, Liwei H (1995) Miocene emplacement and deformation of the Konga Shan granite (Xianshui He fault zone, west Sichuan, China ): Geodynamic implications. Earth and Planetary Science Letters 130: 201–216Google Scholar
  73. Rötzler J (1992) Zur Petrogenese im Sächsischen Granulitgebirge (Die pyroxenfreien Granulite und Metapelite). Geotektonische Forschung 77: 1–100Google Scholar
  74. Rubatto D, Gebauer D (1996) Use of cathodoluminescence for U-Pb zircon dating by ion microprobe (SHRIMP): some examples from high-pressure rocks of the Western Alps. In: Pagel, M. (ed.) International conference on cathodoluminescence and related techniques in geosciences and geomaterials. Nancy, 131–132 (abs.)Google Scholar
  75. Savatenkov VM, Morozova IM, Kutjavin EP (1995) Study of Rb-Sr geochemical behavior in the contact zone of Ozernaya Varaka intrusion. Geochimica (5): 687–696 (in Russian)Google Scholar
  76. Silver LT, Deutsch S (1963) Uranium-lead isotopic variations in zircons: A case study. Journal of Geology 71: 721–758Google Scholar
  77. Smith DGW, St. Jorre Ld, Reed SJB, Long JVP (1991) Zonally metamictized and other zircons from Thor Lake, Northwest Territories. Canadian Mineralogist 29: 301–309Google Scholar
  78. Sommerauer J (1976) Die chemisch-physikalische Stabilität natürlicher Zirkone und ihr U-(Th)-Pb System. PhD Thesis, Zürich 151 pGoogle Scholar
  79. Tichomirowa M, Belyatsky B, Nasdala L, Berger HJ, Koch E, Bombach K (1996) Zircon dating of gray gneisses from the Eastern Erzgebirge. Comparison of different dating methods (Pb/Pb evaporation, conventional U/Pb, SHRIMP) and geological meaning. In: Freiberger Isotopenkolloquium 1996. Proceedings. TU Bergakademie Freiberg, Freiberg, 241–249Google Scholar
  80. Todt AW, Büsch W (1981) U-Pb investigations on zircons from pre-Variscan gneisses - I. A study from the Schwarzwald, West Germany. Geochimica et Cosmochimica acta 45: 1789–1801Google Scholar
  81. Trinkler M, Kempe U, Plötze M, Rieser U (1993) Ober rosa und braunen Fluorit aus Sn-W-Lagerstätten. Chemie der Erde 53: 165–181Google Scholar
  82. Vavra G (1990) On the kinematics of zircon growth and its petrogenetic significance: a catho do-luminescence study. Contributions to Mineralogy and Petrology 106: 90–99CrossRefGoogle Scholar
  83. Vavra G (1994) Systematics of internal zircon morphology in major Variscan granitoid types. Contributions to Mineralogy and Petrology 117: 331–344CrossRefGoogle Scholar
  84. Vavra G, Gebauer D, Schmid R, Compston W (1996) Multiple zircon growth and recrystallization during polyphase Late Carboniferous to Triassic metamorphism in granulites of the Ivrea Zone (Southern Alps): an ion microprobe ( SHRIMP) study. Contribution to Mineralogy and Petrology 122: 337–358Google Scholar
  85. Watznauer A (1974) Beitrag zur Frage des zeitlichen Ablaufes der Granulitgenese (Sächsisches Granulitgebirge). Krystalinikum 10: 181–192Google Scholar
  86. Wenzel Th, Pilot J, Hengst M, Hofmann J (1990) First single zircon 207Pb-206Pb ages from the Saxonian granulite massif. Proceedings of the 5th Meeting Isotopes in Nature. ZFI, Leipzig: 193–202Google Scholar
  87. Zinger TF, Götze J, Levchenkov OA, Shuleshko IK, Yakovleva SZ, Makeyev AF (1996) Zircon in polydeformed and metamorphosed Precambrian granitoids from the Wite Sea Tectonic Zone, Russia: morphology, cathodoluminescence, and U-Pb chronology. International Geology Review 38: 57–73CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Ulf Kempe
  • Torsten Gruner
  • Lutz Nasdala
  • Dieter Wolf

There are no affiliations available

Personalised recommendations