Fungi and Sediments

  • Eric P. Verrecchia


Fungi are saprophytic organisms that can form lichens in symbiosis with an alga. Along with lichens, they excrete large quantities of organic acids, contributing to rock dissolution and neoformation of crystals, mainly oxalates and carbonates. Fungi contribute to the accumulation of manganese and iron as desert varnish and play a major role in the calcium cycle inside calcretes and carbonate soils in arid zones. Fungi constitute an important part of calcified filaments found in calcretes. They are covered with calcium oxalate crystals, which can transform into calcite during early diagenesis. They can also precipitate needle-fiber calcite, a common form of CaCO3 found in soils and calcretes. Although their role has been neglected in sedimentary petrology, fungi are used in the ore industry for leaching metal and in land reclamation for dune fixation and recovering pollutants.


Oxalic Acid Calcium Oxalate Early Diagenesis Calcium Oxalate Dihydrate Plane Polarize Light 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams JB, Palmer F, Staley JT (1992) Rock weathering in deserts: mobilization and concentration of ferric iron by microorganisms. Geomicrobiol J 10: 99–114CrossRefGoogle Scholar
  2. Arnott HJ, Pautard FGE (1970) Calcification in plants. In: Schraer H (ed) Biological calcification: cellular and molecular aspects. North-Holland Publishing Company, Amsterdam, pp 375–446Google Scholar
  3. Ascaso C, Galvan J, Ortega C (1976) The pedogenic action of Parme-lia conspersa, Rhizocarpon geographicum and Umbilicaria pustulata. Lichenologist 8: 151–171CrossRefGoogle Scholar
  4. Ascaso C, Galvan J, Rodrigiez-Pascual C (1982) The weathering of calcareous rocks by lichens. Pedobiologia 24: 219–229Google Scholar
  5. Braconnot H (1825) De la présence de l’oxalate de chaux dans le règne minéral: existence du même sel en quantité énorme dans les plantes de la famille des lichens, et moyen avantageux d’en extraire de l’acide oxalique. Ann Chim Phys 28: 318–322Google Scholar
  6. Briot P, Laroche-Collet S, Locquin M (1983) Rôle de champignons dans la genèse de certaines croûtes carbonatées. L’exemple des calcretes de l’Australie occidentale et du calcrete uranifère de Yeelirrie. 108e Congrès National des Sociétés Savantes, Sciences, 1, 2:153–165Google Scholar
  7. Callot G, Mousain D, Plassard C (1985a) Concentrations de carbonate de calcium sur les parois des hyphes mycéliens. Agronomie 5: 143–150CrossRefGoogle Scholar
  8. Callot G, Guyon A, Mousain D (1985b) Inter-relations entre aiguilles de calcite et hyphes mycéliens. Agronomie 5: 209–216CrossRefGoogle Scholar
  9. Calvet F (1982) Constructive micrite envelope developed in vadose continental environment in Pleistocene eolianites of Mallorca. Acta Geol Hispanica 3: 169–178Google Scholar
  10. Clough KS, Sutton JC (1978) Direct observation of fungal aggregates in sand dune soil. Can J Microbiol 24333–335Google Scholar
  11. Cooks J, Otto E (1990) The weathering effects of the lichen Lecida aff. Sarcogynoides ( Koerb.) on Magaliesberg quartzite. Earth Surf Proc Landf 15: 491–500Google Scholar
  12. Coniglio M, Harrison RS (1983) Holocene and Pleistocene caliche from Big Pine Key, Florida. Bull Can Petrol Geol 31: 3–13Google Scholar
  13. Cromack Jr K, Sollins P, Graustein WC, Speidel K, Todd AW, Spy-cher G, Li CY, Todd RL (1979) Calcium oxalate accumulation and soil weathering in mats of the hypogeous fungus Hystangium crassum. Soil Biol Biochem 11: 463–468CrossRefGoogle Scholar
  14. Cromack K Jr, Sollins P, Todd RL, Fogel R, Todd AW, Fender WM, Crossley ME, Crossley DA Jr (1977) The role of oxalic acid and bicarbonate in calcium cycling by fungi and bacteria: some possible implications for soil animals. Ecol Bull 25: 246–252Google Scholar
  15. Cunningham KI, Northup DE, Pollastro RM, Wright WG, LaRock EJ (1995) Bacteria, fungi and biokarst in Lechuguilla Cave, Carlsbad Caverns National Park, New Mexico. Environ Geol 25: 2–8Google Scholar
  16. Dave SR, Natarajan KA (1981) Leaching of copper and zinc from oxidised ores by fungi. Hydrometallurgy 7: 235–242CrossRefGoogle Scholar
  17. Del Monte M, Sabbioni C, Zappia G (1987) The origin of calcium oxalates on historical buildings, monuments and natural outcrops. Sci Total Environ 67: 37–39Google Scholar
  18. Dragovich D (1993) Distribution and chemical composition of microcolonial fungi and rock coatings from arid Australia. Physical Geogr14:323–341Google Scholar
  19. Drake NA, Heydeman MT, White KH (1993) Distribution and formation of rock varnish in southern Tunisia. Earth Surf Landf 18: 31–41Google Scholar
  20. Edwards HGM, Farwell DW, Jenkins R, Seaward MRD (1992) Vibrational Raman spectroscopic studies of calcium oxalate monohydrate and dihydrate in lichen encrustations on Renaissance frescoes. J Raman Spectrosc 23: 185–189CrossRefGoogle Scholar
  21. Ennever J, Summers FE (1975) Calcification by Candida albicans. J Bacteriol 122: 1391–1393Google Scholar
  22. Foster J.W. (1949) Chemical activities of fungi. Academic Press, New YorkGoogle Scholar
  23. Franceschi VR, Homer HT (1980) Calcium oxalate crystals in plants. Bot Rev 46: 361–427CrossRefGoogle Scholar
  24. Frey-Wyssling A (1981) Crystallography of the two hydrates of crystalline calcium oxalate in plants. Am J Bot 68: 130–141CrossRefGoogle Scholar
  25. Freytet P, Verrecchia EP (1995) Discovery of Ca-oxalate crystals associated with fungi in moss travertines (Bryoherms, freshwater heterogenous stromatolites). Geomicrobiol J 13: 117–127Google Scholar
  26. Friedman GM, Gebelein CD, Sanders JE (1971) Micritic envelopes of carbonate grains are not exclusively of photosynthetic algal origin. Sedimentology 16: 89–96CrossRefGoogle Scholar
  27. Friedmann EI (1982) Endolithic microorganisms in the Antarctic cold desert. Science 215:1045–1053Google Scholar
  28. Galvan J, Rodriguez C, Ascaso C (1981) The pedogenic action of lichens in metamorphic rocks. Pedobiologia 21: 60–73Google Scholar
  29. Gatrall M, Golubic S (1970) Comparative study on some Jurassic and Recent endolithic fungi using scanning electron microscope. In: Crimes TP, Harper TC (eds) Trace fossils. Seel House Press, Liverpool, pp 167–178Google Scholar
  30. Golden DC, Zuberer DA, Dixon JB (1992) Manganese oxides produced by fungal oxidation of manganese from siderite and rhodochrosite. In: Skinner HCW, Fitzpatrick RW (eds) Biomineralization processes, iron, manganese. Catena Suppl 21: 161–168Google Scholar
  31. Goldstein RH (1988) Paleosols of Late Pennsylvanian cyclic strata, New Mexico. Sedimentology 35: 777–803CrossRefGoogle Scholar
  32. Graustein WC, Cromack Jr K, Sollins P (1977) Calcium oxalate: occurrence in soils and effect on nutrient and geochemical cycles. Science 198: 1252–1254CrossRefGoogle Scholar
  33. Grote G, Krumbein WE (1992) Microbial precipitation of manganese by bacteria and fungi from desert rock and rock varnish. Geomicrobiol J 10: 49–57CrossRefGoogle Scholar
  34. Hamlet WM, Plowright CB (1877) On the occurrence of oxalic acid in fungi. Chem News 36:93–94Google Scholar
  35. Horner HT, Tiffany LH, Cody AM (1983) Formation of calcium oxalate crystals associated with apothecia of the discomycete, Dasyscypha capitata. Mycologia 75: 423–435CrossRefGoogle Scholar
  36. Jackson SL, Heath IB (1993) Roles of calcium ions in hyphal tip growth. Microbiol Rev 57:367–382Google Scholar
  37. Jackson TA, Keller WD (1970) A comparative study of the role of lichens and “inorganic” processes in the chemical weathering of Recent hawaiian lava flows. Am J Sci 269: 446–466CrossRefGoogle Scholar
  38. Jeanson C (1973) Altération du marbre d’un chapiteau de la basilique Saint Marc de Venise–Etude au microscope à balayage et à la microsonde. In: Third Int Petrol Symp Petrolio e Ambiante, Roma, pp 209–220Google Scholar
  39. Jones B (1988) The influence of plants and micro-organisms on dia-genesis in caliche: example from the Pleistocene Ironshore Formation on Cayman Brac, British West Indies. Bull Can Petrol Geol 36: 191–201Google Scholar
  40. Jones B, Pemberton SG (1987) Experimental formation of spiky calcite through organically mediated dissolution. J Sedim Petrol 57: 687–694Google Scholar
  41. Jones D, Wilson MJ, McHardy WJ (1981) Lichen weathering of rock-forming minerals: application of scanning electron microscopy and microprobe analysis. J Microsc 124: 95–104CrossRefGoogle Scholar
  42. Jones D, Wilson MJ, Laundon JR (1982) Observations on the location and form of lead in Stereocaulon vesuvianum. Lichenologist 14: 281–286CrossRefGoogle Scholar
  43. Kahle CF (1977) Origin of subaerial Holocene calcareous crusts: role of algae, fungi and sparmicritisation. Sedimentology 24: 413–435CrossRefGoogle Scholar
  44. Klappa CF (1979a) Lichen stromatolites: criterion for subaerial exposure and a mechanism for the formation of laminar calcrete (caliche). J Sedim Petrol 49:387–400Google Scholar
  45. Klappa CF (1979b) Calcified filaments in Quaternary calcretes: organo-mineral interactions in the subaerial vadose environment. J Sedim Petrol 49: 955–968CrossRefGoogle Scholar
  46. Krumbein WE (1972) Rôle des microorganismes dans la genèse, la diagenèse et la dégradation des roches en place. Rev Ecol Biol Sol 9: 283–319Google Scholar
  47. Krumbein WE, Petersen K, Schelinhuber H-J (1989) On the geomicrobiology of yellow, orange, red, brown and black films and crusts developing on several different types of stone and objects of art. In: Proc Int Symp La pellicole da ossalati: origine e significato nella conservazione delle opere d’arte, Centro CNR Gino Bozza, Milano, pp 337–380Google Scholar
  48. Krumbein WE, Jens K (1981) Biogenic rock varnishes of the Negev Desert ( Israel), an ecological study of iron and managnese transformation by cyanobacteria and fungi. Oecologia 50: 25–38Google Scholar
  49. Lapeyrie F, Perrin M, Pepin R, Bruchet G (1984) Formation de weddellite extracellulaire en culture in vitro par Paxillus involutus; signification de cette production pour la symbiose ectomycorhizienne. Can J Bot 62: 1116–1121CrossRefGoogle Scholar
  50. Le Campion-Alsumard T, Golubic S, Priess K (1995) Fungi in corals: symbiosis or disease? Interaction betwwen polyps and fungi causes pearl-like skeleton biomineralization. Mar Ecol Prog Ser 117: 137–147Google Scholar
  51. Phillips SE, Milnes AR, Foster RC (1987) Calcified filaments: an example of biological influences in the formation of calcrete in South Australia. Aust J Soil Sci 25:405–428Google Scholar
  52. Purvis OW (1984) The occurrence of copper oxalate in lichens growing on copper sulphide-bearing rocks in Scandinavia. Lichenologist 17: 111–116CrossRefGoogle Scholar
  53. Robert M, Berthelin J (1986) Role of biological and biochemical factors in soil mineral weathering. In: Huang PM, Schnitzer M (eds) Interactions of soil minerals with natural organics and microbes. Soil Sci Soc Am Spec Publ 17: 453–495Google Scholar
  54. Robert M, Chenu C (1992) Interactions between soil minerals and microorganisms. In: Stotzky G, Bollag J-M (eds) Soil biochemistry 7. Marcel Dekker, New York, pp 307–404Google Scholar
  55. Russ J, Palma RL, Booker JL (1994) Whewellite rock crusts in the Lower Pecos region of Texas. Texas J Sci 46: 165–172Google Scholar
  56. Silverman MP, Munoz E (1970) Fungal attack on rock: solubilization and altered infrared spectra. Science 169: 985–987CrossRefGoogle Scholar
  57. Schnitzer M, Chan YK (1986) Structural characteristics of a fungal melanin and a soil humic acid. Soil Sci Soc Am J 50: 67–71CrossRefGoogle Scholar
  58. Solomon ST, Walkden GM (1985) The application of cathodoluminescence to interpreting the diagenesis of an ancient profile. Sedimentology 32: 877–896CrossRefGoogle Scholar
  59. Staley JT, Palmer FE, Adams JB (1982) Micro colonial fungi: common inhabitants on desert rocks? Science 215:1093–1095Google Scholar
  60. Staley JT, Adams JB, Palmer FE (1992) Desert varnish: a biological perspective. In: Stotzky G, Bollag J-M (eds) Soil biochemistry 7. Marcel Dekker, New York, pp 173–195Google Scholar
  61. Strong GE, Giles JRA, Wright VP (1992) A Holocene calcrete from North Yorkshire, England: implications for interpreting paleoclimates using calcretes. Sedimentology 39:333–347Google Scholar
  62. Tilden JE (1897) Some new species of Minnesota algae which live in a calcareous or siliceous matrix. Bot. Gaz 23: 95–104CrossRefGoogle Scholar
  63. Torre de la MA, Gomez-Alarcon G, Vizcaino C, Garcia MT (1993) Biochemical mechanisms of stone alteration carried out by filamentous fungi living in monuments. Biogeochemistry 19: 129–147CrossRefGoogle Scholar
  64. Verrecchia EP (1990) Lithodiagenetic implications of the calcium oxalate-carbonate cycle in semi-arid calcretes, Nazareth, Israel. Geomicrobiol J 8: 89–101CrossRefGoogle Scholar
  65. Verrecchia EP, Dumont J-L, Rolko KE (1990) Do fungi building limestones exist in semi-arid regions? Naturwissenschaften 77: 584–586CrossRefGoogle Scholar
  66. Verrecchia EP, Dumont J-L, Verrecchia KE (1993) Role of calcium oxalate biomineralization by fungi in the formation of calcretes: a case study from Nazareth, Israel. J Sedim Petrol 63: 1000–1006Google Scholar
  67. Verrecchia EP, Verrecchia KE (1994) Needle-fiber calcite: a critical review and a proposed classification. J Sedim Res A64: 650–664Google Scholar
  68. Verrecchia EP, Dumont J-L (1996) A biogeochemical model for chalk alteration by fungi in semiarid environments. Biogeochemistry 35: 447–470CrossRefGoogle Scholar
  69. Wadsten T, Moberg R (1985) Calcium oxalate hydrates on the surface of lichens. Lichenologist 17: 239–245CrossRefGoogle Scholar
  70. Webley DM, Henderson MEK, Taylor JF (1963) The microbiology of rocks and weathering building stones. J Soil Sci 14: 102–112CrossRefGoogle Scholar
  71. Weed SB, Davey CB, Cook MG (1969) Weathering of mica by fungi. Soil Sci Soc Am Proc 33: 702–706CrossRefGoogle Scholar
  72. Wenberg GM, Erbisch FH, Volin ME (1971) Leaching of copper by fungi. Soc Min Eng Transact AIME 250: 207–212Google Scholar
  73. Went FW (1969) Fungi associated with stalactite growth. Science 166: 385–386CrossRefGoogle Scholar
  74. Whitney KD (1989) Systems of biomineralization in the Fungi. In: Crick RE (ed)Origin, evolution and modern aspects of biomineralization in plants and animals. Plenum Press, New York, pp 433–441Google Scholar
  75. Wilson MJ, Jones D (1984) The occurrence and significance of manganese oxalate in Pertusaria corallina ( Lichenes ). Pedobiologia 26: 373–379Google Scholar
  76. Wilson MJ, Jones D, Russell JD (1980) Glushinskite, a naturally occurring magnesium oxalate. Min Mag 43:837–840Google Scholar
  77. Wright VP (1986) The role of fungal biomineralization in the formation of Early Carboniferous soil fabric. Sedimentology 33: 831–838CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Eric P. Verrecchia
    • 1
  1. 1.U.M.R. 5561 C.N.R.S., Biogéosciences, Centre des Sciences de la TerreUniversité de BourgogneDijonFrance

Personalised recommendations