Subaerial Microbial Mats and Their Effects on Soil and Rock

  • Anna A. Gorbushina
  • Wolfgang E. Krumbein
Chapter

Abstract

Microbial mats (or biofilms) under permanent water cover contain 95–98% biologically stabilised water at ambient temperature, while biofilms in atmospheric environments can be regarded as the maximum biomass maintaining metabolic potential in the presence of the minimum amount of water. Rock or other subaerial biofilms are made up primarily of poikilotroph micro-or-ganisms which thrive on the lowest water activity possible. Biofilms on and in rocks are the main factors in rock decay and the production of patinas, films, varnishes, crusts and stromatolites growing on and in rocks. A poikilotroph microflora is instrumental in maintaining life in truly extreme conditions and over considerable periods of time. The importance of the activity of the rock-dwelling biota and biofilms can be explained in terms of the fractal dimension of the reactive surface of sediment and rock with water and atmosphere, respectively. The weight of the living (mainly microbial) biomass of the planet is recalculated to be 1021 g instead of 1017 g, by including estimates of deep sedimentary and deep rock microbial biospheres. Poikilotroph biofilms under subaerial conditions are involved in both rock-destroying and rock-forming processes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Braams J (1992) Ecological studies on the fungal microflora inhabiting historical sandstone monuments. PhD Thesis, OldenburgGoogle Scholar
  2. Characklis WG, Marshall KC (eds) (1990) Biofilms. Wiley, New YorkGoogle Scholar
  3. Cloud PE (1942) Notes on stromatolites. Amer J Sci 240, 363–379CrossRefGoogle Scholar
  4. Cooke, RC, Whipps JM (1993) Ecophysiology of fungi. Blackwell Scientific Publications, OxfordGoogle Scholar
  5. Cunningham AB, Bouwer EJ, Characklis WG (1990) Biofilms in porous media. In: Characklis WG, Marshall KC (eds) Biofilms. Wiley, New York, pp 697–732Google Scholar
  6. DeWinder B (1990) Ecophysiological strategies of drought-tolerant phototrophic micro-organisms in dune soils. PhD Thesis, AmsterdamGoogle Scholar
  7. Doemel WN, Brock TD (1974) Bacterial stromatolites. Origin of laminations. Science 184: 1083–1085CrossRefGoogle Scholar
  8. Dornieden, Th (1997) Untersuchungen zu physikalischen (mechanischen) Auswirkungen von Pilzen auf Minerale. MSc Thesis, OldenburgGoogle Scholar
  9. Ehrenberg CG (1838) Über das im Jahre 1686 in Curland vom Himmel gefallene Meteorpapier und über dessen Zusammensetzung aus Conferven und Infusorien. Abh königl Akad Wiss Berlin, Physikal Klasse, 44–60Google Scholar
  10. Eppard M, Krumbein WE, Koch C, Rhiel E, Staley J, Stackebrandt E (1996) Morphological, physiological and molecular biological investigations on new isolates similar to the genus Geodermatophilus ( Actinomycetes ). Arch Microbiol 166: 12–22CrossRefGoogle Scholar
  11. Friedman EI (ed) (1993) Antarctic microbiology, Wiley, New YorkGoogle Scholar
  12. Friedmann EI, Ocampo-Friedmann R (1984) Endolithic micro-organisms in extreme dry environments: analysis of a lithobiontic microbial habitat. In: Klug MJ, Reddy CA (eds) Microbial ecology. Current Perspectives ASM, Washington, pp 177–187Google Scholar
  13. Garcia-Valles M, Vendrell-Saz M, Krumbein WE, Urzi C (1996) Biological pathways leading to the formation and transformation of oxalate rich layers on monument surfaces exposed to Mediterranean climate. In: Realini M, Toniolo L (eds) The oxalate films in the conservation of works of art. EDITEAM Castello d’Argile (BO), pp 319–334Google Scholar
  14. Gehrmann-Jannsen, CK (1996) On the biopitting corrosion by epilithic and endolithic lichens on carbonate rocks - bio-physical and bio-chemical weathering aspects. PhD Thesis, OldenburgGoogle Scholar
  15. Golubic S (1967) Algenvegetation der Felsen, eine ökologische Algenstudie im dinarischen Karstgebiet. Binnengewässer 23, Schweizerbarth, StuttgartGoogle Scholar
  16. Gorbushina AA, Krumbein WE, Hamann C-H, Panina L, Soukharjevski S, Wollenzien U (1993) On the role of black fungi in colour change and biodeterioration of antique marbles. Geomicrobiol J 11: 205–221CrossRefGoogle Scholar
  17. Gorbushina AA, Krumbein WE, Vlasov D (1996a) Biocarst cycles on monument surfaces. In: Pancella R (ed) Preservation and restoration of cultural heritage. Proceedings of the 1995 LPC Congress. EPFL, Lausanne, pp 319–332Google Scholar
  18. Gorbushina AA, Krumbein WE, Rosenfeld A, Goren-Inbar N (1996b) On the microbiology of flint tools and silica skins. In: Int Union of Microbiological Societies (ed) 8th Int Congress of Bacteriology and Mycology Div of IUMS, Jerusalem, p 103Google Scholar
  19. Haeckel E (1877) Bathybius und die Moneren. Kosmos 1: 293–305Google Scholar
  20. Hofmann, B (1989) Genese, Alteration und rezentes Fließsystem der Uranerzlagerstätte Krunkelbach (Menzenschwand, Südschwarzwald). PhD Thesis, BernGoogle Scholar
  21. Hofmann-Bang N (1813) Conferva chthonoplastus. In: Hornemann JWE (ed) Flora Danica. Schultz, KopenhagenGoogle Scholar
  22. Humboldt AV (1793) Florae Fribergensis specimen plantas cryptogamicas praesertim subterraneas exhibens. Rottmann, BerlinGoogle Scholar
  23. Hutton J (1788) Theory of the Earth. Trans R Soc Edinb. Book ver-Sinn 1795 vol 1+2, EdinburghGoogle Scholar
  24. Jaag O (1945) Untersuchungen über die Vegetation und Biologie der Algen des nackten Gesteins in den Alpen, im Jura und im Schweizerischen Mittelland. Beitr Kryptogamenflora, Schweiz, 9: 1–560Google Scholar
  25. Jones D, Wilson MJ (1986) Biomineralization in crustose lichens. In: Leadbeater SC, Riding R (eds) Biomineralization in lower plants and animals. Clarendon Press, Oxford, pp 91–106Google Scholar
  26. Karl DM (ed) (1995) The microbiology of deep-sea hydrothermal vents. CRC Press, Boca RatonGoogle Scholar
  27. Klappa CF (1979) Lichen stromatolites. Criterion for subaerial exposure and a mechanism for the formation of laminar calcretes (caliche). J Sed Petrol 49: 387–400CrossRefGoogle Scholar
  28. Krumbein WE (1966) Zur Frage der Gesteinsverwitterung ( Ueber geochemische und mikrobiologische Bereiche der exogenen Dynamik) PhD Thesis, WuerzburgGoogle Scholar
  29. Krumbein WE (1969) Über den Einfluß der Mikroflora auf die exogene Dynamik (Verwitterung und Krustenbildung). Geol Rdsch 58: 333–363CrossRefGoogle Scholar
  30. Krumbein WE (1979) Photolithotrophic and chemoorganotrophic activity of bacteria and algae as related to beachrock formation and degradation (Gulf of Aqaba, Sinai): Geomicrobiol J 1: 139–203CrossRefGoogle Scholar
  31. Krumbein WE (1983) Stromatolites–challenge of a term in space and time. Precambrian Res 20: 493–531CrossRefGoogle Scholar
  32. Krumbein WE (1987a) Die Entdeckung inselbildender Mikroorganismen. In: Gerdes G, Krumbein WE, Reineck H-E, Kramer (eds) Mellum–Portrait einer Insel. Frankfurt am Main, pp 62–75Google Scholar
  33. Krumbein WE (1987b) Das Farbstreifensandwatt: Bau, Struktur und Erdgeschichte von Mikrobenmatten. In: Gerdes G, Krumbein WE, Reineck H-E, Kramer (eds) Mellum–Portrait einer Insel. Frankfurt am Main, pp 170–187Google Scholar
  34. Krumbein WE (1993) Microbial biogeomorphogenesis–an appraisal of Immanuel Kant. In: Guerrero R, Pedros-Alio C (eds) Trends in microbial ecology. Spanish Soc for Microbiology, Spain, pp 483–488Google Scholar
  35. Krumbein WE (1994) The year of the slime–instead of an introduction. In: Krumbein WE, Paterson DM, Stal LJ (eds) Biostabilization of sediments. BIS, Oldenburg, pp 1–7Google Scholar
  36. Krumbein WE (1995) A neglected carbon sink? Biodegradation of rocks. In: Allsopp D, Colwell RR, Hawksworth DL (eds) Microbial diversity and ecosystem function. UNEP/CAB International, Egham, UK, pp 113–123Google Scholar
  37. Krumbein WE (1996) Geophysiology and parahistology of the interactions of organisms with the environment. Mar Ecol 17: 1–21CrossRefGoogle Scholar
  38. Krumbein WE, Diakumaku E, Gehrmann C, Gorbushina AA, Grote G, Heyn C, Hilge C, Kuroczkin J, Petersen K, Rudolph C, Schostak V, Sterflinger K, Warscheid Th, Wolf B, Wollenzien U, Kyung Y (1996) Chemoorganotrophic micro-organisms as agents in the destruction of monuments and objects of art. Proceedings of the 8th International Congress on Deterioration and Conservation of Stone, Sept 3o-Oct 04, 1996, Berlin, Möller, Berlin, pp 631–636Google Scholar
  39. Krumbein WE, Dyer BD (1985) This planet is alive. Weathering and biology–a multifaceted problem. In: Dreyer JI (ed) The chemistry of weathering, Reidel, Dordrecht, pp 143–160CrossRefGoogle Scholar
  40. Krumbein WE, Giele C (1979) Calcification in a coccoid cyanobacterium associated with the formation of desert stromatolites. Sedimentology 26: 593–604CrossRefGoogle Scholar
  41. Krumbein WE, Jens K (1981) Biogenic rock varnishes of the Negev Desert ( Israel) an ecological study of iron and manganese transformation by cyanobacteria and fungi: Oecologia 50: 25–38CrossRefGoogle Scholar
  42. Krumbein WE, Lapo A (1996) Vernadsky’s biosphere as a basis of geophysiology. pp. 115–134 In: Bunyard P (ed) Gaia in action. Science of the living Earth. Floris, EdinburghGoogle Scholar
  43. Krumbein WE, Levit G (1997) Die Erde - ein Lebewesen (Earth - a living being). Einblicke ( Forschungsmagazin der Carl von Ossietzky Universitaet, Oldenburg ) 25: 4–7Google Scholar
  44. Krumbein WE, Villbrandt M (1994) Biofilme und Mikrobenmatten extremer Lebensraeume. In: Hausmann K, Kremer BP (eds) Extremophile. VCH, Weinheim, pp 113–139Google Scholar
  45. Lide DR (ed) (1993) CRC handbook of chemistry and physics, CRC Press, Boca RatonGoogle Scholar
  46. Ludwig R, Theobald G (1852) Über die Mitwirkung der Pflanzen bei der Ablagerung des kohlensauren Kalkes. Pogg. Ann Phys Chem 87: 91–107Google Scholar
  47. Mitchell TG, Shewan JM (1968) Aspects of taxonomy with respect to biodeterioration. In: Walters AH, Elphick JJ (eds) Biodeterioration of materials. Elsevier, Amsterdam, pp 13–21Google Scholar
  48. Neu Th (1994) Biofilms and microbial mats. In: Krumbein WE, Paterson DM, Stal LJ (eds) Biostabilization of sediments. BIS, Oldenburg, pp 9–16Google Scholar
  49. Neu Th (1996) Significance of bacterial surface-active compounds in interaction of bacteria with interfaces. Microbiol. Rev 60: 151–166Google Scholar
  50. Potts M (1994) Desiccation tolerance in prokaryotes. Microbiol Reviews 58:755–805Google Scholar
  51. Potts M (1996) Etymology of the genus name Nostoc (cyanobacteria). Int J Syst Bact 47: 584–584CrossRefGoogle Scholar
  52. Rivadeneyra MA, Ramos-Cormenzana A, Garcia-Cervigon A (1985) Etude de l’influence du rapport Mg/Ca sur la formation de carbonate par les bactéries telluriques. Can J Microbiol 31: 229–231CrossRefGoogle Scholar
  53. Rivadeneyra MA, Delgado R, delMoral A, Ferrer M, Ramos-Cormenzana A (1994) Carbonate precipitation by Bacillus sp. isolated from saline soils. Geomicrobiol J 11: 175–184Google Scholar
  54. Roelleke S, Muyzer G, Wawer C, Wanner G, Lubitz W (1996) Identification of bacteria in a biodegraded wall painting by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16 S rRNA. Appl Environ Microbiol 62: 2059–2065Google Scholar
  55. Scholz J (1996) Eine Feldtheorie der Bryozoen, Mikrobenmatten und Sedimentoberflächen. Habilitationsschrift, HamburgGoogle Scholar
  56. Scholz J, Krumbein WE (1996) Microbial mats and biofilms associated with bryozoans. In: Gordon DP, Smith AM, Grant-Mackie JA (eds) Bryozoans in space and time. Proceedings of the loth Int Bryozoology Conference, Wellington, New Zealand. National Institute of Water and Atmosphere Research Ltd, Wellington, NZ, pp 283–298Google Scholar
  57. Schrödinger E (1944) What is life? Cambridge Univ Press, CambridgeGoogle Scholar
  58. Schwartzman DW, Volk T (1990) Biotic enhancement of weathering and the habitability of earth. Nature 340: 457–460CrossRefGoogle Scholar
  59. Schwartzman DW, Volk T (1991) When soil cooled the world. New Sci 51: 33–36Google Scholar
  60. Staley JT, Adams JB, Palmer FE (1992) Desert varnish: a biological perspective. In: Stotzky G, Bollag JM (eds) Soil biochemistry 7. Marcel Dekker, New York, pp 173–195Google Scholar
  61. Sterflinger K (1995) Geomicrobiological investigations on the alteration of marble monuments by dematiaceous fungi (Sanctuary of Delos, Cyclades, Greece ). PhD ThesisGoogle Scholar
  62. Sterflinger K, Becker T, Krumbein WE, Warscheid T (1994) The respiration bell jar - a rapid non-destructive technique for the measurement of the activity of micro-organisms on and in objects of cultural value. Dtsch. Gesellschaft für zerstörungsfreie Prüfung, Berichte, 45: 382–391Google Scholar
  63. Sterflinger K, Blazquez F, Garcia-Vallès M, Krumbein WE, Vendrell-Saz M (1996) Patina, microstromatolites and black spots as related to biodeterioration processes of granite. In: Vicente MA., Delgado-Rodrigues J, Acevedo J (eds) Degradation and conservation of granitic rocks in monuments. Protection and Conservation of the European Cultural Heritage. Res Rep Nr 5, pp 391–397Google Scholar
  64. Viles HA (1984) Biokarst. Review and prospect. Progr Physical Geogr 8: 532–542Google Scholar
  65. Wachendörfer V, Riege H, Krumbein WE (1994) Parahistological sediment in thin sections. In: Krumbein WE, Paterson DM, Stal LJ (eds) Biostabilization of sediments. BIS, Oldenburg, pp 257–277Google Scholar
  66. Wang Fuxing (1993) Biokarst. Int Geol Corr Program 299. Geol Publ House, BeijingGoogle Scholar
  67. Watchman AL (1996) Properties and dating of silica skins associated with rock art. PhD Thesis, CanberraGoogle Scholar
  68. Wolf B, Krumbein WE (1996) Tiefenbesiedlung und Biodeterioration an Marmorkapitellen des Freundschaftstempels im Park von Sanssouci ( Potsdam ). Int Z Bauinstandsetzen 2: 15–32Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Anna A. Gorbushina
    • 1
  • Wolfgang E. Krumbein
    • 2
  1. 1.Institute of BiologySt Petersburg State UniversityStary PeterhofRussia
  2. 2.Geomicrobiology, ICBMCarl von Ossietzky Universität OldenburgOldenburgGermany

Personalised recommendations